Đạo hàm của hàm số y = x +` cos^2(x)`
Đạo hàm của x là 1
Đạo hàm của `cos^2(x) là -2sin(x)cos(x)` (sử dụng công thức đạo hàm của `cos^2(x)`).
Vậy, đạo hàm của hàm số y = x + `cos^2(x)` là `dy/dx = 1 - 2sin(x)cos(x).`
Khi `sin(x)cos(x) < 1/2`, tức là x thuộc khoảng `(0, π)` hoặc `(2π, 3π)`, ta có `1 - 2sin(x)cos(x) > 0.`
Khi `sin(x)cos(x) > 1/2`, tức là x thuộc khoảng `(π, 2π)`, ta có `1 - 2sin(x)cos(x) < 0.`
Vậy, trên các khoảng `(0, π)` và `(2π, 3π)`, đạo hàm là dương, và trên khoảng `(π, 2π)`, đạo hàm là âm.
Kết luận: hàm số y = x + `cos^2(x)` tăng trên các khoảng `(0, π)` và `(2π, 3π)`, và giảm trên khoảng `(π, 2π).`
Vậy, tính đơn điệu của hàm số y = x + `cos^2(x)` là tăng trên các khoảng `(0, π)` và `(2π, 3π)`, và giảm trên khoảng `(π, 2π).`
\(y'=1-2.cosx.sinx=1-sin2x\le0,\forall x\)
Vậy hàm số nghịch biến trên R