ĐKXĐ: \(2x-x^3\ge0\)
=>\(x^3-2x\le0\)
=>\(x\left(x^2-2\right)\le0\)
TH1: \(\begin{cases}x\ge0\\ x^2-2\le0\end{cases}\Rightarrow\begin{cases}x\ge0\\ x^2\le2\end{cases}\)
=>\(\begin{cases}x\ge0\\ -\sqrt2\le x\le\sqrt2\end{cases}\Rightarrow0\le x\le\sqrt2\)
TH2: \(\begin{cases}x\le0\\ x^2-2\ge0\end{cases}\Rightarrow\begin{cases}x\le0\\ x^2\ge2\end{cases}\)
=>\(\begin{cases}x\le0\\ \left[\begin{array}{l}x\ge\sqrt2\\ x\le-\sqrt2\end{array}\right.\Rightarrow x\le-\sqrt2\end{cases}\)
\(y=\sqrt{2x-x^3}\)
=>\(y^{\prime}=\frac{\left(2x-x^3\right)^{\prime}}{2\cdot\sqrt{2x-x^3}}=\frac{2-3x^2}{2\cdot\sqrt{2x-x^3}}\)
Đặt y'>0
=>\(2-3x^2>0\)
=>\(-3x^2>-2\)
=>\(3x^2<2\)
=>\(x^2<\frac23\)
=>\(-\frac{\sqrt6}{3}
Kết hợp ĐKXĐ, ta được: \(0
=>Hàm số đồng biến trên khoảng \(\left(0;\frac{\sqrt6}{3}\right)\)
Đặt y'<0
=>\(2-3x^2<0\)
=>\(-3x^2<-2\)
=>\(3x^2>2\)
=>\(x^2>\frac23=\frac69\)
=>\(\left[\begin{array}{l}x>\frac{\sqrt6}{3}\\ x<-\frac{\sqrt6}{3}\end{array}\right.\)
Kết hợp ĐKXĐ, ta được: \(\left[\begin{array}{l}\frac{\sqrt6}{3}
=>Hàm số nghịch biến trên các khoảng \(\left(\frac{\sqrt6}{3};\sqrt2\right);\left(-\infty;-\sqrt2\right)\)