Lời giải:
$y=\frac{1}{3}mx^2-\frac{1}{2}x^2+mx$
$\Rightarrow y'=\frac{2}{3}mx-x+m$
Để $y'>0, \forall x\in\mathbb{R}$
$\Leftrightarrow x(\frac{2}{3}m-1)+m>0, \forall x\in\mathbb{R}$
\(\Leftrightarrow \left\{\begin{matrix} \frac{2}{3}m-1=0\\ m>0\end{matrix}\right.\Rightarrow m=\frac{3}{2}\)