Gọi điểm cố định có tọa độ \(x_0;y_0\Rightarrow\) với mọi M ta có:
\(x_0^4-y_0+1-m\left(x_0^2-4\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0^2-4=0\\x_0^4-y_0+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A\left(2;17\right)\\B\left(-2;17\right)\end{matrix}\right.\)
\(y'=4x^3-2mx\) \(\Rightarrow\left\{{}\begin{matrix}y'\left(2\right)=32-4m\\y'\left(-2\right)=-32+4m\end{matrix}\right.\)
Tiếp tuyến tại A: \(y=\left(32-4m\right)\left(x-2\right)+17=\left(32-4m\right)x+8m-47\)
Tiếp tuyến tại B: \(y=\left(4m-32\right)\left(x+2\right)+17=\left(4m-32\right)x+8m-47\)
Hai tiếp tuyến song song khi: \(\left\{{}\begin{matrix}32-4m=4m-32\\8m-17\ne8m-17\end{matrix}\right.\)
Không tồn tại m thỏa mãn