Chương 1:ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ CỦA HÀM SỐ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
AllesKlar

Cho hàm số bậc ba \(y=f\left(x\right)\) có đồ thị như hình vẽ bên. Có bao nhiêu giá trị nguyên của tham số \(m\in\left[0;20\right]\) để hàm số \(g\left(x\right)=\left|f^2\left(x\right)-2f\left(x\right)-m\right|\) có 9 điểm cực trị?

A. 8        B. 9           C. 10         D. 11

Giải chi tiết cho mình bài này với ạ, mình cảm ơn nhiều♥

undefined

Hoàng Tử Hà
12 tháng 4 2022 lúc 23:57

undefined 9 đko nhỉ

Nguyễn Việt Lâm
13 tháng 4 2022 lúc 13:18

Đặt \(h\left(x\right)=f^2\left(x\right)-2f\left(x\right)-m\Rightarrow h'\left(x\right)=2f'\left(x\right)\left[f\left(x\right)-1\right]\)

\(h'\left(x\right)=0\Rightarrow\left[{}\begin{matrix}f'\left(x\right)=0\\f\left(x\right)=1\end{matrix}\right.\)

Từ đồ thị ta thấy \(f'\left(x\right)=0\) có 2 nghiệm (do \(f\left(x\right)\) có 2 cực trị) và \(y=1\) cắt \(y=f\left(x\right)\) tại 3 điểm

\(\Rightarrow h'\left(x\right)=0\) có 5 nghiệm

\(\Rightarrow\) Hàm \(g\left(x\right)\) có 9 cực trị khi \(f^2\left(x\right)-2f\left(x\right)-m=0\) có 4 nghiệm không trùng với nghiệm của \(h'\left(x\right)=0\)

TH1: \(m=0\Rightarrow f^2\left(x\right)-2f\left(x\right)=0\Rightarrow\left[{}\begin{matrix}f\left(x\right)=0\\f\left(x\right)=2\end{matrix}\right.\)

\(f\left(x\right)=0\) có 2 nghiệm, trong đó 1 nghiệm trùng với \(f'\left(x\right)=0\) nên chỉ tính 1 nghiệm, \(f\left(x\right)=2\) có 3 nghiệm \(\Rightarrow f^2\left(x\right)-2f\left(x\right)=0\) có 4 nghiệm ko trùng \(h'\left(x\right)=0\) (thỏa mãn)

TH2: \(m>0\), đặt \(k=f\left(x\right)\Rightarrow k^2-2k-m=0\) (1) luôn có 2 nghiệm pb trái dấu \(k_1< 0< k_2\) do \(c=-m< 0\)

Từ đồ thị ta thấy \(f\left(x\right)=k_1\) luôn có đúng 1 nghiệm

Do đó, \(f\left(x\right)=k_2\) phải có 3 nghiệm phân biệt đồng thời \(k_2\ne1\) \(\Rightarrow\left\{{}\begin{matrix}0< k_2< 4\\k_2\ne1\end{matrix}\right.\)

(\(k_2\) là nghiệm dương của (1) nên \(k_2=1+\sqrt{m+1}\))

\(\Rightarrow\left\{{}\begin{matrix}0< 1+\sqrt{m+1}< 4\\1+\sqrt{m+1}\ne1\end{matrix}\right.\) \(\Rightarrow m< 8\Rightarrow m=\left\{1;2;3;4;5;6;7\right\}\)

Kết hợp lại ta được \(m=\left\{0;1;...;7\right\}\) có 8 giá trị nguyên của m thỏa mãn


Các câu hỏi tương tự
AllesKlar
Xem chi tiết
Pham Tien Dat
Xem chi tiết
Cathy Trang
Xem chi tiết
Hà Mi
Xem chi tiết
Hà Mi
Xem chi tiết
Hà Mi
Xem chi tiết
Pham Tien Dat
Xem chi tiết
Hà Mi
Xem chi tiết
Nguyễn Ngọc Minh
Xem chi tiết