\(x+y\ge1\Rightarrow\left\{{}\begin{matrix}x\ge1-y\\y\ge1-x\end{matrix}\right.\)
\(M=y^2+2x+\dfrac{y}{4x}=y^2+x+x+\dfrac{y}{4x}\ge y^2+1-y+x+\dfrac{1-x}{4x}\)
\(M\ge\left(y-\dfrac{1}{2}\right)^2+x+\dfrac{1}{4x}+\dfrac{1}{2}\ge x+\dfrac{1}{4x}+\dfrac{1}{2}\ge2\sqrt{\dfrac{x}{4x}}+\dfrac{1}{2}=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)