Cho hai số thực a,b thay đổi thỏa mãn điều kiện a+b≥1a+b≥1 và a>0a>0. Tìm giá trị nhỏ nhất của biểu thức: \(P=\frac{8a^2+b}{4a}+b^2\)
Cho ba số thực a,b,c thỏa mãn điều kiện \(a^3+b^3+c^3-3abc=1\)
Tính giá trị nhỏ nhất của biểu thức \(P=a^2+b^2+c^2\)
cho ba số thực dương a,b,c thỏa mãn a+b+c=5.Giá trị nhỏ nhất của biểu thức P=4a+4b+\(\dfrac{c^3}{ab+b}\)là
Cho a,b,c là các số thực dương thay đổi thỏa mãn: \(a^2+b^2+c^2=3\)
Tìm giá trị nhỏ nhất của biểu thức: P = \(\frac{a^2}{b^2+c^2+bc}+\frac{b^2}{a^2+c^2+ac}+\frac{c^2}{a^2+b^2+ab}\)
Cho hai số thực a,b thỏa mãn \(2021\le a\le2022,2021\le b\le2022\)
TÌm giá trị lớn nhất của biểu thức: \(A=\left(a+b\right)\left(\dfrac{2021}{a}+\dfrac{2021}{b}\right)\)
Câu 1: Cho a,b là các số dương thỏa mãn a+b=2016. Tìm giá trị lớn nhất của biểu thức P=ab
a.10082 b,2016 c.20162 d.4.20162
Câu 2: Cho a,b là các số dương thỏa mãn ab=16 và đặt P=\(\dfrac{a+b}{2}\). Khẳng định nào sau đây là đúng
a.P≥4 b.P≥8 c.\(\dfrac{17}{2}\) d.5
Câu 3: Cho a, b là các số dương. Tìm giá trị nhỏ nhất của biểu thức P=\(\dfrac{a}{b}+\dfrac{b}{a}\)
a.2 b.0 c.1 d.-2
Câu 4: Tìm mệnh đề đúng
a. a2-a+1>0,∀a b. a2+2a+1>0,∀a c.a2-a≥0, ∀a d.a2-2a-1≥0,∀a
giúp em với ạ
Cho hai số thực không âm a,b thỏa mãn \(a^2+b^2=2\). Tìm giá trị lớn nhất, nhỏ nhất của biểu thức \(M=\frac{a^3+b^3+4}{ab+1}\)
Cho các số thực a,b thỏa mãn ab>0. Tìm Min của biểu thức \(P=\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}-\dfrac{2a}{b}-1\)