\(\left(x+y\right)^2=\dfrac{25}{4}xy\Leftrightarrow x^2+y^2=\dfrac{17}{4}xy\Leftrightarrow\dfrac{x}{y}+\dfrac{y}{x}=\dfrac{17}{4}\)
Đặt \(\dfrac{x}{y}=a>0\Rightarrow a+\dfrac{1}{a}=\dfrac{17}{4}\Leftrightarrow a^2-\dfrac{17}{4}a+1=0\Rightarrow\left[{}\begin{matrix}a=4\\a=\dfrac{1}{4}\end{matrix}\right.\)
Vậy \(\dfrac{x}{y}=4\) hoặc \(\dfrac{x}{y}=\dfrac{1}{4}\)