\(VT=\dfrac{1-\dfrac{sina}{cosa}}{1+\dfrac{sina}{cosa}}=\dfrac{\dfrac{cosa-sina}{cosa}}{\dfrac{cosa+sina}{cosa}}=\dfrac{cosa-sina}{cosa+sina}=VP\)
\(\dfrac{\left(1-tana\right)}{1+tana}=\left(1-\dfrac{sina}{cosa}\right):\left(1+\dfrac{sina}{cosa}\right)\)
\(=\dfrac{cosa-sina}{cosa}:\dfrac{cosa+sina}{cosa}\)
\(=\dfrac{cosa-sina}{cosa+sina}\)
=cosa−sinacosa:cosa+sinacosa=cosa−sinacosa:cosa+sinacosa