Bài 13. Chứng minh rằng phương trình f(x)=g(x) có nghiệm trên khoảng (a;b) thì nghiệm đó là duy nhất khi f(x) đồng biến còn g(x) là hàm nghịch biến trên khoảng (a;b)
Cho hàm số f tăng trên R và g giảm trên R. Chứng minh nếu phương trình f(x) = g(x) có một nghiệm thì đó là nghiệm duy nhất của phương trình.
Mong mọi người giúp đỡ em với. Cảm ơn rất nhiều ạ!
Cho 2 hàm số f(x)=ax+\(\sqrt{3}\) (a≠0) và hàm số g(x)= (a2-1)x-1
chứng minh rằng:
a, Hàm số f(x)+g(x) và hàm số g(x)-f(x) là các hàm số đồng biến trên R
b, Hàm số f(x)-g(x) là hàm số nghịch biến trên R
nhờ giúp mk với
xét tính đồng biến nghịch biến của các hàm số trên
\(y=f\left(x\right)=x^2-2x+3\) trên khoảng \(_{\left(1;+\infty\right)}\)
y=f(x)=\(\sqrt{3-x}\) trên khoảng \(\left(-\infty;3\right)\)
Xét tính đồng biến nghịch biến của hàm số
a)y=-x^3+20 trên R
Bài 10. Xét tính đồng biến và nghịch biến của các hàm số sau trên các khoảng đã chỉ ra
a: \(f\left(x\right)=2x^2-4x+3\) trên các khoảng \(\left(3;+\infty\right)\) và (-10;1)
b: \(f\left(x\right)=-3x^2+6x+1\) trên các khoảng \(\left(1;+\infty\right)\) và (-10;-2)
c: \(f\left(x\right)=\dfrac{x}{x-2}\) trên khoảng \(\left(-\infty;2\right)\)
d: \(f\left(x\right)=-\dfrac{1}{x+1}\) trên các khoảng (-3;-2) và \(\left(-1;+\infty\right)\)
e: \(f\left(x\right)=x^{2020}+x^2-3\) trên khoảng \(\left(0;+\infty\right)\)
Cho hàm số y=f(x)=x2 - 2(m-1)x + m
a) Tìm m để bpt f(x≥0) nhận mọi x thuộc R là nghiệm
b) Tìm m để pt f(x) = 0 có 2 nghiệm x1, x2 lớn hơn 1.
1, Tìm m để hàm số \(f\left(x\right)=\left(m-1\right)x+m^2-3\) đồng biến trên R
2, Tìm m để hàm số \(f\left(x\right)=-x^2+\left(m-1\right)x+2\) nghịch biến trên \(\left(1;+\infty\right)\)
Tìm m : \(x^2-2x-3\sqrt{x^2-2x+5}=m\) có nghiệm ( dùng phương pháp bảng biến thiên, đồ thị )
Mình cảm ơn ạ !