cho a khác b khác c khác 0 và \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\) Tính giá trị biểu thức M=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\), a + b + c khác 0; a = 2003. Tính b,c.
cho ba cố khác nhau từng đôi một và khác 0 thỏa mãn : \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\) . CM: \(\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}\) ko phụ thuộc vào các giá trị của a; b; c
cho a+b+c+d khác 0\(\frac{a}{b+c+d}\)=\(\frac{b}{a+c+d}\)=\(\frac{c}{a+b+d}\)=\(\frac{d}{a+b+c}\)
tính \(\frac{a+b}{c+d}\)=\(\frac{b+c}{a+d}\)=\(\frac{c+d}{a+b}\)=\(\frac{d+a}{b+c}\)
Cho a,b,c khác 0 thỏa mãn: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Tính giá trị biểu thức: \(M=\frac{ab+bc+ca}{a^2+b^2+c^2}\)
Cho a, b, c khác 0 thỏa mãn:\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
Tính giá trị của biểu thức M = \(\frac{ab+bc+ca}{a^2+b^2+c^2}\)
1, Cho a,b,c khác 0; a+b+c khác 0
thỏa mãn ac=\(b^2;ab=c^2\)
Tính M=\(\frac{b^{333}}{a^{111}.c^{222}}\)
2, Tính A=\(1+\frac{1}{2}\left(1+2\right)\)
Cho a + c = 2b và 2bd = c(b+d).
Nếu b và d khác 0 thì \(\frac{a}{b}-\frac{c}{d}=......\)
chứng minh rằng ,nếu \(\frac{a+b}{c+a}=\frac{b+c}{d+a}\)trong đó a,b,c,d khác 0 thì a=c