\(f\left(1\right)=1^2+b\cdot1+c=1+b+c\\ \Leftrightarrow1+b+c=2\\ \Leftrightarrow b+c=1\\ f\left(-3\right)=\left(-3\right)^2+b\cdot\left(-3\right)+c=9-3b+c\\ \Leftrightarrow9-3b+c=0\\ \Leftrightarrow-3b+c=-9\\ \left(b+c\right)-\left(-3b+c\right)=1-\left(-9\right)\\ \Leftrightarrow b+c+3b-c=1+9\\ \Leftrightarrow4b=10\\ \Leftrightarrow b=2,5\\ \Rightarrow2,5+c=1\\ \Leftrightarrow c=-1,5\)
Theo giả thiết bài ra ta có hệ phương trình :
\(\left\{{}\begin{matrix}f\left(1\right)=1+b+c=2\\f\left(-3\right)=9-3b+c=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b+c=1\\-3b+c=-9\end{matrix}\right.\)
Giải hệ ta tìm được :
\(\left\{{}\begin{matrix}b=\dfrac{5}{2}\\c=-\dfrac{3}{2}\end{matrix}\right.\)