Violympic toán 9

Nguyen Thi Bich Huong

Cho \(f\left(n\right)=\left(n^2+n+1\right)^2+1\). Tính: \(\frac{f\left(1\right).f\left(3\right).f\left(5\right)...f\left(2017\right)}{f\left(2\right).f\left(4\right).f\left(6\right)...f\left(2018\right)}\)

Nguyễn Việt Lâm
27 tháng 4 2020 lúc 7:29

\(f\left(2k-1\right)=\left[\left(2k-1\right)^2+2k-1+1\right]^2+1\)

\(=\left(4k^2+1-2k\right)^2+1=\left(4k^2+1\right)^2-4k\left(4k^2+1\right)+4k^2+1\)

\(=\left(4k^2+1\right)\left(4k^2-4k+2\right)=\left(4k^2+1\right)\left[\left(2k-1\right)^2+1\right]\)

\(f\left(2k\right)=\left(4k^2+1+2k\right)^2+1=\left(4k^2+1\right)^2+4k\left(4k^2+1\right)+4k^2+1\)

\(=\left(4k^2+1\right)\left(4k^2+4k+2\right)=\left(4k^2+1\right)\left[\left(2k+1\right)^2+1\right]\)

\(\Rightarrow\frac{f\left(2k-1\right)}{f\left(2k\right)}=\frac{\left(4k^2+1\right)\left[\left(2k-1\right)^2+1\right]}{\left(4k^2+1\right)\left[\left(2k+1\right)^2+1\right]}=\frac{\left(2k-1\right)^2+1}{\left(2k+1\right)^2+1}\)

\(\Rightarrow\frac{f\left(1\right).f\left(3\right).f\left(5\right)...f\left(2k-1\right)}{f\left(2\right).f\left(4\right).f\left(6\right)...f\left(2k\right)}=\frac{2}{10}.\frac{10}{16}.\frac{16}{50}...\frac{\left(2k-3\right)^2+1}{\left(2k-1\right)^2+1}.\frac{\left(2k-1\right)^2+1}{\left(2k+1\right)^2+1}=\frac{2}{\left(2k+1\right)^2+1}\)

\(\Rightarrow\frac{f\left(1\right)f\left(3\right)...f\left(2017\right)}{f\left(2\right)f\left(4\right)...f\left(2018\right)}=\frac{2}{2019^2+1}=\frac{1}{2038181}\)


Các câu hỏi tương tự
dia fic
Xem chi tiết
Bùi Đức Huy Hoàng
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Tấn Dũng
Xem chi tiết
ghdoes
Xem chi tiết
Hoàng Ngọc Tuyết Nung
Xem chi tiết
Lê Thư Mi
Xem chi tiết
Hoa Nguyễn Lệ
Xem chi tiết
Big City Boy
Xem chi tiết