Đặt \(x^2-4x+6-\left|x^2-4\right|=t\)
Khi \(x\in\left[0;3\right]\) thì \(t\in\left[-2;2\right]\)
Trên \(\left[-2;2\right]\) ta thấy \(f\left(t\right)\) có 3 nghiệm: \(-2< t_1< -1< 0< t_2< 1< t_3< 2\)
Xét pt: \(g\left(x\right)=x^2-4x+6-\left|x^2-4\right|=k\) trên \(\left[0;3\right]\) (k ứng với các giá trị t bên trên)
Khá dễ dàng để lập BBT (hoặc đồ thị) của \(g\left(x\right)\) trên đoạn đã cho. Từ BBT ta thấy:
- Với \(-2< k< -1\) pt có đúng 1 nghiệm
- Với \(0< k< 1\) pt có 3 nghiệm
- Với \(1< k< 2\) pt cũng có 3 nghiệm
Vậy pt đã cho có 7 nghiệm phân biệt