Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thien Nguyen

Cho đường tròn tâm O, đường kính AB. Vẽ tia Ox vuông góc với AB tại O, nó cắt (O) tại M. Lấy điểm E thuộc đoạn thẳng OM (E không trùng với O và M). AE cắt (O) tại C, tia BC cắt Ox tại D

1) Chứng minh tứ giác OECB nội tiếp đường tròn

2) Chứng minh OA.OB = OD.OE

3) Kẻ tiếp tuyến với (O) tại C, nó cắt ED tại I. Chứng minh I là trung điểm của đoạn thẳng ED

Akai Haruma
19 tháng 4 2021 lúc 19:20

Lời giải:

1.

Ta có: $\widehat{EOB}=\widehat{xOB}=90^0$

$\widehat{ECB}=\widehat{ACB}=90^0$ (góc nt chắn nửa đường tròn)

Tứ giác $OECB$ có tổng 2 góc đối $\widehat{ECB}+\widehat{EOB}=90^0+90^0=180^0$ nên $OECB$ là tứ giác nội tiếp.

2) Vì $OECB$ là tứ giác nội tiếp nên $\widehat{OBC}=\widehat{AEO}$ hay $\widehat{DBO}=\widehat{AEO}$

Xét tam giác $DBO$ và $AEO$ có:

$\widehat{DBO}=\widehat{AEO}$ (cmt)

$\widehat{DOB}=\widehat{AOE}=90^0$ 

$\Rightarrow \triangle DBO\sim \triangle AEO$ (g.g)

$\Rightarrow \frac{DO}{BO}=\frac{AO}{EO}\Rightarrow OA.OB=OE.OD$ 

3.

Ta có: $\widehat{ICE}=\widehat{ICA}=\widehat{CBA}$ (góc tạo bởi tiếp tuyến và dây cung thì bằng góc nội tiếp chắn cung đó)

$\widehat{CBA}=\widehat{CEI}$ (do $OECB$ là tgnt)

$\Rightarrow \widehat{ICE}=\widehat{CEI}\Rightarrow IE=IC(*)$
Mặt khác:

$\widehat{AOD}=\widehat{ACD}=90^0$ và cùng nhìn cạnh $AD$ nên $AOCD$ là tứ giác nội tiếp. Suy ra $\widehat{CAB}=\widehat{CDI}$. 

$\widehat{ICD}=90^0-\widehat{ICE}=90^0-\widehat{CBA}=\widehat{CAB}=\widehat{CDI}$

$\Rightarrow IC=ID(**)$

Từ $(*); (**)\Rightarrow ID=IE$ hay $I$ là trung điểm $DE$

Akai Haruma
19 tháng 4 2021 lúc 19:25

Hình vẽ:

undefined


Các câu hỏi tương tự
Aurora
Xem chi tiết
Phương Trần
Xem chi tiết
Nguyễn Hồng Ngọc
Xem chi tiết
Nguyenn Nguyenn
Xem chi tiết
Anh Quynh
Xem chi tiết
Anh Quynh
Xem chi tiết
Wolf 2k6 has been cursed
Xem chi tiết
Aurora
Xem chi tiết
Trần Hạnh
Xem chi tiết