Cho đường tròn(O;R) có hai đường kính AB và CD vuông góc với nhau.Trên đoạn thẳng AB lấy một điểm M(khác O).Đường thẳng CM cắt đường tròn (O) tại điểm thứ hai N.Đường thẳng vuông góc với AB tại M cắt tiếp tuyến tại N của đường tròn (O) ở điểm P.Chứng minh rằng:
a)Tứ giác OMNP nội tiếp được
b)Tứ giác CMPO là hình bình hành
c)Tích CM.CN không phụ thuộc vào vị trí của điểm M trên đoạn thẳng AB
cho nửa đường tròn tâm O đường kính AB. Lấy điểm C thuộc nửa đường tròn và điểm D nằm trên đoạn OA. Vẽ các tiếp tuyến Ax, By của nửa đường tròn. Đường thẳng qua C, vuông góc với CD cắt tiếp tuyến Ax, By lần lượt tại M và N
a, CM các tứ giác ADCM và BDCN nội tiếp đường tròn
b, CMR \(\widehat{MDN}=90^o\)
c, Gọi P là giao điểm của AC và DM, Q là giao điểm của BC và DN. CMR PQ // AB
ghi giả thiết và kết luận
Cho đường tròn (O;R) đường kính AB. Trên tia đối của tia AB lấy điểm M sao cho MA=R. Vẽ tiếp tuyến MC với đường tròn (O) (C là tiếp điểm ). Vẽ dây CD vuông góc với AB tại H.Chứng minh:
a) MO là đường trung trực của BC
b) MD là tiếp tuyến của đường tròn (O).
c) Kẻ đường kính CE của đường tròn (O). Tính mC, DE theo R.
cho đường tròn tâm O bán kính R , AB là dây khác đường kính . qua O kẻ đường vuông góc với AB tại H , cắt tiếp tuyến tại A cảu đường tròn tại M. vẽ tiếp tuyến tại C cắt MB tại D . chứng minh AC.CD =R^2
Cho đường tròn (O; R) đường kính AB, lấy điểm M thuộc (O) sao cho góc MAB = 30°. Gọi C là điểm đối xứng với điểm O qua điểm B. Qua điểm C, vẽ đường thẳng vuông góc với AB cắt đường thăng AM tại D. a) Chứng minh: tứ giác BCDM nội tiếp trong đường tròn tâm I. Xác định vị trí điểm I b) Chứng minh: AD.AM = 6R² c) Tính số đo của góc ADC
Cho (O, R) đường kính AB, tiếp tuyến Ax, trên Ax lấy điểm M bất kì, kẻ dây AC vuông góc với OM a) Chứng minh MC là tiếp tuyến của (O) b) Gọi H là hình chiếu vuông góc của C lên AB. Tiếp tuyến tại B cắt tia AC tại D. Gọi I là trung điểm của CH, tia AI cắt BD tại N. Chứng minh: N là trung điểm của BD c) Chứng minh: CN là tiếp tuyến của (O)
cho đường tròn o đương kính ab trên tia đối của tia ba lấy h kẻ qua h đường thẳng d vuông góc với ab lấy điểm c thuộc đường tròn sao cho ca>cb và c khác a c khác b tia ac cắt d tại s
1 cm bcsh là tứ giác nội tiếp
2 tiếp tuyến tại c của đg tròn o cắt d tại i. Đoạn thẳng ai cắt đường tròn o tại e cm ac.as=ae.ai
Cho (O;R), đường kính AB vuông góc với dây cung MN tại điểm H (H nằm giữa O và B). Trên tia đối của tia NM lấy điểm C sao cho đoạn thẳng AC cắt (O) tại K khác A. Hai dây MN và BK cắt nhau ở E.
a, C/m tứ giác AHEK nội tiếp
b, Qua N kẻ đường thẳng vuông góc với AC cắt tia MK tại F. C/m: ΔNFK cân và EM.NC = EN.CM
Chớ đường tròn tâm O đường kính AB gọi d là tiếp tuyến tại B với đường tròn tâm O. Trên d lấy điểm M kẻ tiếp tuyến MC vuông góc với đường tròn tâm O. Kẻ CH vuông góc với AB tại H. MA cắt đường tròn tâm O tại K và cắt CH tại I, OM cắt CB tại N.
a. Cm AMO= KBC.
b. Cm ICKN nội tiếp đường tròn
c. Cho biết CH=4 AH =2 tính IN