cho đường tròn O , từ điểm A ở ngoài đường tròn vẽ 2 tiếp tuyến AB ,AC ( B,C là các tiếp điểm ) . OA cắt BC tại H
A/ chứng minh tứ giác ABOC nội tiếp và OA vuông góc BC
B/ gọi M là trung điểm của BH . chứng thẳng qua M và vuông góc OM cắt các tia AB,AC theo thứ tự tại E , F . chứng minh góc OEM = góc OBM
C/ chứng minh F là trung điểm AC
thankkkkkkkkkkkkkkkkk
a) Ta có: \(\angle ABO+\angle ACO=90+90=180\Rightarrow ABOC\) nội tiếp
Vì AB,AC là tiếp tuyến \(\Rightarrow\Delta ABC\) cân tại A và AO là phân giác \(\angle BAC\)
\(\Rightarrow AO\bot BC\)
b) Ta có: \(\angle OME=\angle OBE=90\Rightarrow OMBE\) nội tiếp
\(\Rightarrow\angle OBM=\angle OEM\)
c) Vì \(\Delta ABC\) cân tại A và AO là phân giác \(\angle BAC\)
\(\Rightarrow H\) là trung điểm BC
Tương tự như câu b \(\Rightarrow\angle OFM=\angle OCM\)
mà \(\angle OBM=\angle OCM\) (\(\Delta OBC\) cân tại O)
\(\Rightarrow\angle OFM=\angle OEM\Rightarrow\Delta OFE\) cân tại O có \(OM\bot FE\)
\(\Rightarrow\) M là trung điểm FE
Xét \(\Delta HFM\) và \(\Delta BEM:\) Ta có: \(\left\{{}\begin{matrix}MH=MB\\MF=ME\\\angle HMF=\angle BME\end{matrix}\right.\)
\(\Rightarrow\Delta HFM=\Delta BEM\left(c-g-c\right)\Rightarrow\angle HFM=\angle BEM\)
\(\Rightarrow HF\parallel BE\Rightarrow HF\parallel AB\) mà H là trung điểm BC
\(\Rightarrow F\) là trung điểm BC