Cho đường tròn (O;R) và điểm A nằm ngoài đường tròn (O). Từ A kẻ hai tiếp tuyến AB và AC với (O) (B, C là các tiếp điểm). Gọi H là giao điểm của OA và 'BC. a) Lấy điểm D đối xứng với B qua O. Gọi E là giao điểm của đoạn AD với đường tròn (O) ( E không trùng với D). Chứng minh DE.BA=BD.BE . b) Tính góc HEC
a) Xét (O):
D đối xứng với B qua O (gt).
\(\Rightarrow\) O là trung điểm của BD.
\(\Rightarrow\) BD là đường kính của (O).
Xét (O):
BD là đường kính của (O) (cmt).
\(E\in\left(O\right)\left(gt\right).\)
\(\Rightarrow\widehat{BED}=90^o.\)
Xét (O):
AB là tiếp tuyến (gt).
\(\Rightarrow BD\perp AB\) (Tính chất tiếp tuyến).
\(\Rightarrow\widehat{ABD}=90^o.\)
Xét \(\Delta ADB\) và \(\Delta BDE:\)
\(\widehat{ABD}=\widehat{BED}\left(=90^o\right).\\ \widehat{ADB}chung.\)
\(\Rightarrow\dfrac{BD}{DE}=\dfrac{AB}{BE}\) (2 cạnh tương ứng tỉ lệ).
\(\Rightarrow BD.BE=BA.DE.\)