cần mỗi ý d thôi nhé
Cho hai đường tròn bằng nhau (O;R) và (O'R) cắt nhau tại A và B sao cho AB=R. Kẻ đk AC của đường tròn tâm (O). Gọi E là một điểm bất kì thuộc cung nhỏ BC. CB và EB lần lượt cắt (O') tại các điểm thứ 2 là D và F
a) CM ˆAFD=90AFD^=90 độ
b) CM AE=AF
c) Gọi P là giao điểm của CE và FD. Cm AP là đường trung trực của EF
d) Tính tỉ số AQ/AP
Cho tam giác ABC nhọn , nội tiếp đường tròn (O) bán kính R , ba đường cao AD , BE , CK của tam giác ABC cắt nhau tại H sao cho AH = R , gọi M , N lần lượt là trung điểm của AB , AC
a ) C/m AMON là tứ giác nội tiếp
b) Tính diện tích hình tròn ngoại tiếp tứ giác AMON
c) Tính số đo góc BAC
Chỉ cần vẽ thôi cũng đc!!!!!!!
cho nửa đường tròn ( o; r) đường kính ab. dây mn = r ( m thuộc cung nhỏ an) tia am cắt tia bn tại k, an cắt bm tại i. 1, cm: tứ giác kmin nội tiếp 2, cm: kn.ka=kn.kb 3. tính theo r độ dài đường thẳng ik 4 cho M , N di chuyển trên nửa đường tròn ( MN = R ) . xác định vị trí của M và N để diện tích tam giác KAB lớn nhất
Cho tam giác nhọn ABC nội tiếp đường tròn ( O ; R ) Hai đường cao AD BE ( D thuộc BC E thuộc AC ) lần lượt cắt đường tròn (O) tại các điểm thứ hai là M và N
a) Chứng minh: CDHE,AEDB là tứ giác nội tiếp đường tròn
b) Chứng minh MN // DE
c) Cho (O) và dây AB cố định Chứng minh rẳng độ dài bán kính đường tròn ngoại tiếp tam giác CDE luôn không đổi khi điểm C di chuyển trên cung lớn
Cho đường tròn (O;R) có đường kính CD và M là điểm thuộc đường tròn (M ≠ C;M ≠ D).Tiếp tuyến tại M của (O) cắt tiếp tuyến tại C và D lần lượt tại A và B.
a.Chứng minh AC + BD = AB
b.Chứng minh tam giác AOB vuông
c.Chứng minh AC.BD=\(\dfrac{CD^2}{4}\)
Bài Tập: Cho nửa đường tròn (O;R) đường kính AB. Trên cùng một nửa mặt phẳng bờ AB chứa nửa đường tròn (O), vẽ hai tiếp tuyến Ax, By của nửa đường tròn. Từ điểm M thuộc nửa đường tròn (O) vẽ tiếp tuyến thứ ba cắt Ax, By lần lượt tại P và Q. a) Chứng minh bốn điểm A, P, M, O cùng nằm trên một đường tròn. b) AM cắt OP tại điểm I, BM cắt OQ tại điểm K. Chứng minh MIOK là hình chữ nhật và tính tích AP.BQ theo R. c) Gọi N là giao điểm của BP và IK. Chứng minh rằng khi M di chuyển trên nửa đường tròn (M khác A; B) thì tỉ số Sabn/ Sabm luôn không đổi.
cho nửa đường tròn o bán kính r đường kính AB, B thuộc nửa đường tròn. trên dây BM lấy N, tia AN cắt nửa đường (o) tại P, tia AM cắt PB tại Q
a)CM 4 điểm M,N,P,Q thuộc 1 đường tròn
b) CM tg MAB đồng dạng tg MNQ
c)MO là tiếp tuyến của đường tròn ngoại tiếp tg MNQ
d) dựng hbh ANBC, CM QB=QC.sinQPM
cho hình vuông ABCD nội tiếp đường tròn tâm O. Gọi M,N lần lượt là trung điểm của BC và CD. Đường thẳng AM; BN cắt đường tròn tại E và F. Số đo góc EDF = ?
cho tam giác abc nhọn nội tiếp đường tròn o với các tiếp điểm là e,f,n(e thuộc ab, f thuộc ac, n thuộc bc) kẻ đường kính nm tiếp tuyến tâm o qua m cắt ab ac lần lượt tại d và i an cắt di tại k cm dk/ki=be/cf