Cho tam giác ABC(AB<AC) có ba góc nhọn. Đường tròn tâm O đường kính BC cắt các cạnh AC, AB lần lượt tại E, F. Gọi H là giao điểm của BE và CF. D là giao điểm của AH và BC. Chứng minh EFDO là tứ giác nội tiếp.
Cho tam giác ABC có 3 góc nhọn. Các đường tròn đường kính AB và AC cắt nhau tại điểm thứ hai là D, cắt AC, AB thứ tự tại E và F.
a Chứng minh D thuộc BC và 3 đường thẳng AD, BE, CF thẳng hàng
b]Chứng minh I là tâm đường tròn nội tiếp tam giác DEF
Cho tam giác ABC nhọn nội tiếp đường tròn (O). OM vuông góc AB, ON vuông góc AC (M thuộc AB, N thuộc AC).
1) CM tứ giác AMON nội tiếp.
2) AH vuông góc BC tại H. I là trung điểm AO. Dây AE đường tròn tâm I đường kính AO sao cho AE // BC. HE cắt MN tại K. CM IK vuông góc BC.
3) HE cắt đường tròn tâm I đường kính AO tại D. CM DM là tia phân giác góc BDE.
Cho tam giác ABC nhọn nội tiếp đường tròn (O). OM vuông góc AB, ON vuông góc AC (M thuộc AB, N thuộc AC).
1) CM tứ giác AMON nội tiếp.
2) AH vuông góc BC tại H. I là trung điểm AO. Dây AE đường tròn tâm I đường kính AO sao cho AE // BC. HE cắt MN tại K. CM IK vuông góc BC.
3) HE cắt đường tròn tâm I đường kính AO tại D. CM DM là tia phân giác góc BDE.
Cho tam giác nhọn ABC (AB < AC). Đường tròn tâm O đường kính BC cắt cạnh AC, AB lần lượt tại D và E,BD và CE cắt nhau tại H.
a) Chứng minh: AEHD nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác AEHD
b) Chứng minh: IE là tiếp tuyến của đường tròn (O)
c) Vẽ đường lính EF của đường tròn (I),OF cắt đường tròn (I) tại M ,OI cắt ED tại K.Chứng minh: Tứ giác MKIF nội tiếp.
Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Các đường cao AD, BE cắt nhau tại H. Tiếp tuyến tại A của (O) cắt đường thằng BC tại M.
a) C/M tứ giác DHEC nội tiếp
b)CM 4 điểm A,B,D,E cùng thuộc 1 đg tròn
c)CM MA2=MB.MC
d) AD cắt (O) tại điểm thứ hai là I.Vẽ đường kính AK của (O).CM BK=CI
e) Kẻ IF vuông góc với AB (F thuộc AB). FD cắt AC tại .CM IN//BE
Giải hộ em câu d và e thôi ạ mấy câu kia giải hay không cũng được.
Cho tam giác ABC nhọn nội tiếp đường tròn (O) (AB<AC) hai đường BE,CF của tam giác ABC cắt nhau tại trực tâm H.Vẽ đường kính AD của (O).Gọi K là giao điểm của AH với (O) L,P lần lượt là giao điểm của BC và EF,AC và KD.CM:
1)Tứ giác EHKP nội tiếp và xác định tâm I của đường tròn này,chứng minh I thuộc BC
2)Gọi M là trung điểm của BC.Chứng minh:AH=2OM
3)Gọi T là giao điểm của (O) với đường tròn ngoại tiếp tam giác EFK.Chứng minh:L,K,T thẳng hàng
cho tam giác ABC có 3 góc nhọn nội tiếp đg tròn tâm O kẻ các đg cao AF, CG của tam giác ABC (G thuộc AB, F thuộc BC) đg kính AD của đg tròn tâm O cắt BC tại E
1, chứng minh tứ giác AGFC nội tiếp 1 đg tròn
2, chứng minh EA.ED=EB.EC
3, gọi K và I lần lượt là hình chiếu vuông góc của F trên các cạnh CG và AC đg thẳng IK cắt cạnh AB tại H chứng minh HF\(\perp\)AB
Cho tam giác nhọn ABC nội tiếp đường tròn ( O ; R ) Hai đường cao AD BE ( D thuộc BC E thuộc AC ) lần lượt cắt đường tròn (O) tại các điểm thứ hai là M và N
a) Chứng minh: CDHE,AEDB là tứ giác nội tiếp đường tròn
b) Chứng minh MN // DE
c) Cho (O) và dây AB cố định Chứng minh rẳng độ dài bán kính đường tròn ngoại tiếp tam giác CDE luôn không đổi khi điểm C di chuyển trên cung lớn