b: Xét ΔMAB và ΔMCA có
góc MAB=góc MCA
góc AMB chung
Do đó: ΔMAB đồng dạng với ΔMCA
=>MA/MC=MB/MA
hay MA^2=MB*MC
c: MA^2=MB*MC
=>MC=20^2/8=25cm
=>BC=17cm
=>R=8,5cm
b: Xét ΔMAB và ΔMCA có
góc MAB=góc MCA
góc AMB chung
Do đó: ΔMAB đồng dạng với ΔMCA
=>MA/MC=MB/MA
hay MA^2=MB*MC
c: MA^2=MB*MC
=>MC=20^2/8=25cm
=>BC=17cm
=>R=8,5cm
Bài 13. Cho (O, R) và điểm M nằm ngoài đường tròn. Qua M kẻ hai tiếp tuyến MA, MB với (O; R). Đoạn OM cắt đường thẳng AB tại điểm H và cắt (O, R) tại I. I. CMR: M, A, B, O cùng thuộc 1 đường tròn. 2. Kẻ đường kính AD với (O, R). Đoạn MD cắt (O, R) tại C. CMR: MH. MO= MC. MD Em cần gấp
Qua điểm M nằm ngoài đường tròn (O; R) vẽ 2 tiếp tuyến MN, MP (N,P là các tiếp điểm) và cát tuyến MAB (MA < MB ) nằm trong NMO.
a) Chứng minh: MO vuông góc NP tại H và tứ giác MNOP nội tiếp.
b) Chứng minh: HN là phân giác AHB.
c) Từ A vẽ đường thẳng song song với NB cắt MN tại C; NH tại D. Chứng minh A là trung điểm của CD.
Từ điểm M nằm ngoài (O) kẻ 2 tiếp tuyến MA, MB. Vẽ dây AC // MB. Nối MC cắt đường tròn tại D. Nối AD cắt MB tại K
a, CMR : △KMD ∼ △KAM
△KBD ∼ △KAB
2. CMR : KM = KB
Cho đường tròn (O; R) cố định. Từ điểm M nằm ngoài đường tròn (O) kẻ hai tiếp tuyến MA, MB (A, B là các tiếp điểm). Gọi H là giao điểm của OM và AB.
a) Chứng minh OM vuông góc với AB và OH.OM = R2
b) Từ M kẻ cát tuyến MNP với đường tròn (N nằm giữa M và P), gọi I là trung điểm của NP (I khác O). Chứng minh 4 điểm A, M, O, I cùng thuộc một đường tròn và tìm tâm của đường tròn đó
c) Qua N kẻ tiếp tuyến với đường tròn (O), cắt MA và MB theo thứ tự ở C và D. Biết MA = 5cm, tính chu vi tam giác MCD.
d) Qua O kẻ đường thẳng d vuông góc với OM, cắt tia MA và MB lần lượt tại E và F. Xác định vị trí của M để diện tích tam giác MEF nhỏ nhất.
Từ một điểm m nằm ngoài đường tròn (O) ta vẽ hai tiếp tuyến MA MB và cát tuyến MCD ko đi qua tâm O, gọi I là trung điểm của CD.Gọi H là giao điểm của AB và MO.Chứng minh MC*MD=MA2
Và MC*MD=MH*MO
Có cả hình nha
Từ một điểm m nằm ngoài đường tròn (O) ta vẽ hai tiếp tuyến MA MB và cát tuyến MCD ko đi qua tâm O, gọi I là trung điểm của CD. Cm tứ giác MAOB và MIOB nội tiếp
cho đường tròn o r và điểm m nằm ngoài đường tròn .qua m kẻ hai tiếp tuyến ma,mb với đường tròn (0,r) (a,b là tiếp điểm ) đoạn thẳng om cắt đường thẳng ab tại điểm h và cắt đường tròn (0,r) tại I 1, chứng minh M,A,B,O cùng thuộc một đường tròn 2,kẻ đường kính A,B của đường tròn (O,R) Đoạn thẳng MD cắt đường tròn (O,R) tại C khác D chứng minh MA² =MH.MO=MC.MD