Lời giải:
Vì $MA,MB$ là tiếp tuyến của $(O)$ nên:
$MA\perp OA, MB\perp OB$
$\Rightarrow \widehat{MAO}=\widehat{MBO}=90^0$
Tứ giác $MAOB$ có tổng 2 góc đối: $\widehat{MAO}+\widehat{MBO}=90^0+90^0=180^0$ nên là tứ giác nội tiếp (đpcm).
Vì $OC=OD=R$ nên tam giác $OCD$ cân tại $O$
Do đó đường trung tuyến $OI$ đồng thời là đường cao
$\Rightarrow \widehat{OIM}=90^0$
Tứ giác $MIOB$ có tổng 2 góc đối $\widehat{OIM}+\widehat{OBM}=90^0+90^0=180^0$ nên là tứ giác nội tiếp (đpcm)