a: góc OIA+góc OCA=180 độ
=>OIAC nội tiếp
b: Gọi giao của DC và OA là H
=>BC vuông góc OA tại H
Xét ΔOHD vuông tại H và ΔOIA vuông tại I có
góc HOD chung
=>ΔOHD đồng dạng với ΔOIA
=>OH*OA=OI*OD
=>OI*OD=R^2
a: góc OIA+góc OCA=180 độ
=>OIAC nội tiếp
b: Gọi giao của DC và OA là H
=>BC vuông góc OA tại H
Xét ΔOHD vuông tại H và ΔOIA vuông tại I có
góc HOD chung
=>ΔOHD đồng dạng với ΔOIA
=>OH*OA=OI*OD
=>OI*OD=R^2
Từ điểm A ở ngoài đường tròn (O ; R) vẽ hai tiếp tuyến AB, AC (B và C là tiếp điểm) và cát tuyến AMN (M nằm giữa A và N) sao cho cung MBN nhỏ hơn cung MCN. Gọi H là trung điểm của đoạn thẳng MN. Đường thẳng BC cắt đoạn thẳng OA và tia OH thứ tự tại I và L. Chứng minh rằng : b) R2= OH.OL c) MIN = 2.MCN
Từ điểm A nằm ngoài đường tròn (O;R) vẽ các tiếp tuyến AB, AC với đường tròn (B, C là các tiếp điểm). Trên bán kính OC lấy điểm M. Tia AM cắt (O) tại D và E (D nằm giữa A và E). Đoạn thẳng OA cắt BC tại H.
a) Chứng minh 4 điểm A, B, O, C cùng thuộc một đường tròn
b) Chứng minh AC2=AD.AE.
c) Chứng minh góc AHD = góc AEO
d) Vẽ đường thẳng qua O vuông góc với DE và vẽ tiếp tuyến của đường tròn (O) tại E. Hai đường thẳng này cắt nhau tại I. Chứng minh B, C, I thẳng hàng.
Cho đường tròn tâm O bán kính R và một điểm A nằm ngoài đường tròn . Qua A kẻ tiếp tuyến AB với đường tròn ( B là tiếp điểm ) . Vẽ tia Ax nằm giữa tia AB và tia AO cắt đường tròn (O) tại hai điểm C và D ( C nằm giữa A và D ) . Gọi M là trung điểm của dây CD , kẻ BH vuông góc với AO tại H .
a, Tính tích OH.OA theo R
b, chứng minh 4 điểm A , B , M , O cùng thuộc một đường tròn
c, Gọi E là giao điểm của OM với HB . Chứng minh ED là tiếp tuyến của đường tròn ( O;R )
Cho đường tròn (O) và một điểm A nằm ngoài đường tròn. Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B và C là hai tiếp điểm).Đường thẳng qua B và song song với AC cắt (O) tại điểm thứ 2 là D. chứng minh BE đi qua trung điểm M của AC
Cho đường tròn (O) và một điểm A nằm ngoài đường tròn. Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B và C là hai tiếp điểm).Đường thẳng qua B và song song với AC cắt (O) tại điểm thứ 2 là D. chứng minh BE đi qua trung điểm M của AC
Cho đường tròn tâm O bán kính R và 1 điểm A nằm ngoài đường tròn sao cho OA = 2R . Vẽ 2 tiếp tuyến AB, AC ( B, C là các tiếp điểm ) Đường thẳng OA cắt BC tại H. Cắt cung nhỏ và cung lớn BC lần lượt tại M và N.
a) Chứng minh R2 = OA . HM
b) Vẽ cát tuyến bất kì ADE. Gọi K là điểm DE. Chứng tỏ 5 điểm A, B, O, K ,C cùng thuộc 1 đường tròn. Xác định tâm và bán kính của đường tròn đó .
c) Chứng minh AM . AN = AH . AO
Bài 4: Cho đường tròn (O) và một điểm A nằm ngoài đường tròn. Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B và C là hai tiếp điểm). Vẽ đường kính BD của đường tròn (O) a) Chứng minh: OA BC và DC // OA. b) Đường thẳng AD cắt (O) tại điểm thứ hai là E. Chứng minh: AE.AD = AC2
Từ điểm A nằm ngoài (O;R) vẽ các tiếp tuyến AM,AN (M,N là 2 điểm). MN cắt AO tại H. a) chứng minh 4 điểm A,M,O,N cứng thuộc đường tròn. Xác định tâm I và bán kính của đường tròn. b) chứng minh OA vuông góc MN tại H là trung điểm của MN. c) chứng minh AM2=AH.AO=OA2-R2. d) vẽ đường kính MD của (O). Chứng minh ND song song OA và 2OH=ND
Cho đường tròn tâm O, bán kính R. M là điểm nằm ngoài đường tròn. Vẽ tiếp tuyển MA của đường tròn (A là tiếp điểm). Vẽ đường kính AB của (O), MB cắt (O) tại C. Gọi D là trung điểm của dây BC. a) Chứng minh 4 điểm: M, A, O, D cùng nằm trên một đường tròn. b) Chứng minh 4Rẻ=BC BM