Cho đường tròn (O) đường kính BC, điểm M thuộc đường tròn (M khác C và B). Tiếp tuyến tại C của đường tròn (O) cắt tia BM tại N. Lấy A là điểm chính giữa cung nhỏ MC, tia CA cắt tia BM tại D. E là giao điểm AB và MC
a) Tính số đo của góc BMC
b) Chứng minh tứ giác ADME nội tiếp đường tròn
c) Chứng minh DM/DN=BM/BN
a: góc BMC=1/2*180=90 độ
b: góc CAB=1/2*sđ cung AB=90 độ
góc CMB=1/2*sđ cung BC=90 độ
Vì góc DAE+góc DME=90+90=180 độ
=>ADME nội tiếp