BT: Cho (O;R) đường kính AB, tia tiếp tuyến Ax. Trên tia Ax lấy diểm M, đoạn thẳng MO cắt đường tròn tại I
a, Tính số đo cung nhỏ AI và cung lớn AI khi AM=R.√3
b, Vẽ tiếp tuyến MC với đường tròn( C là tiếp điểm). MC cắt tiếp tuyến tại B của đường tròn tại N. Chứng minh góc MON=90 độ và AM.BN=R^2
c, Chứng minh: I là tâm đường tròn nội tiếp tam giác MAC
Cứu tui, tui đang cần gấp!!
a: Xét ΔAOM vuông tại A có tan AOM=AM/OA=căn 3
nên góc AOM=60 độ
=>sđ cung nhỏ AI=60 độ
=>sđ cung lớn AI=300 độ
b: Xét (O) có
MA,MC là tiếp tuyến
nên MA=MC và OM là phân giác của góc COA(1)
Xét (O) có
NC,NB là tiếp tuyến
nên NC=NB và ON là phân giác của góc COB(2)
Từ (1), (2) suy ra góc MON=1/2*180=90 độ
Xét ΔMON vuông tại O có OC là đường cao
nên MC*CN=OC^2
=>AM*BN=R^2
c: góc IAC=90 độ-góc OIA
góc MAI=90 độ-góc OAI
mà góc OIA=góc OAI
nên góc IAC=góc IAM
=>AI là phân giác của góc MAC
mà MI là phân giác của góc AMC
nên I là tâm đường tròn nội tiếp ΔMAC