Chương II - Đường tròn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
tthnew

Cho đường tròn (O) bán kinh AB, M thuộc đường tròn. Vẽ N đối xứng A qua M; BN cắt đường tròn tại C. Gọi E là giao điểm của AC và BM; F là điểm đổi xứng với E qua M.

a) Chứng minh \(NE\bot AB\)

b) Chứng minh FA là tiếp tuyến của (O).

c) Chứng minh FN là tiếp tuyến của đường tròn (B;BA)

d) Chứng minh BM . BF = BF2 - FN2

Hình vẽ.

Giúp em bài này với, em nghĩ không ra.

tthnew
26 tháng 12 2020 lúc 16:18

Em vừa giải ra, nhưng hy vọng tìm được cách đơn giản hơn.

Cách của em:

a+ b)

Dễ có AN là đường trung trực FE nên AF = FE.

^FAE=180o - 2. ^AEF = 180o - 2. ^CEB = 2. ^EBC

Dễ có BM là đường trung trực AN nên BN = BA.

Do đó tam giác NBA cân tại B.

Vậy BM là đường trung trực đồng thời là phân giác.

Vậy ^EBC = ^ABE suy ra ^FAE = 2. ^EBC = ^EBC +^ABE = ^CBA.

Ta có: ^FAB = ^FAE+^CAB=^CBA +^CAB = 90o

Vậy FA là tiếp tuyến (O) (1)

Mặt khác tứ giác FNEA có FM = ME; MN = MA nên là hình bình hành.

Vậy FA // NE (2)

Từ (1) và (2) suy ra NE vuông góc với AB.

c) BM là đường trung trực AN nên BF là đường trung trực AN

Có ngay FN = FA \(\Rightarrow\widehat{FNA}=\widehat{FAN}\)

Dễ chứng minh $\Delta MBN = \Delta MBA$ nên $\widehat{ANB}=\widehat{NAB}$

$\widehat{FNB}=\widehat{FAN}+\widehat{NAB}=\widehat{FAB}=90^o$

d) $BF^2-FN^2 =BN^2 = BM \cdot BF$

Nguyễn Việt Lâm
26 tháng 12 2020 lúc 16:42

Em nghĩ quá phức tạp :D

\(\widehat{AMB}\) và \(\widehat{ACB}\) đều là góc nội tiếp chắn nửa đường tròn nên AC và BM là 2 đường cao của tam giác ABN

\(\Rightarrow\) E là trực tâm \(\Rightarrow NE\) là đường cao thứ 3 \(\Rightarrow NE\perp AB\)


Các câu hỏi tương tự
Trần Nhật Quân
Xem chi tiết
Sonyeondan Bangtan
Xem chi tiết
Phương
Xem chi tiết
Tam Pham
Xem chi tiết
Lê Thị Thu Huệ
Xem chi tiết
Phương Linh
Xem chi tiết
Phương Linh
Xem chi tiết
vy kim bình
Xem chi tiết
Đỗ Thanh Tùng
Xem chi tiết