cho đường tròn (O;R) và dây cung BC cố định (BC<2R) . Gọi A là điểm di động trên cung lớn BC sao cho ABC là tam giác có 3 góc nhọn. Các đường cao AD,BE,CF của tam giác cắt nhau tại H . a) CM:tứ giác AEHF nội tiếp đường tròn; xác định tâm I của đường tròn đó.b)CMR:khi điểm A di động thì tiếp tuyến tại E của đường tròn tâm (I) luôn đi qua 1 điểm cố định.c)Xác định vị trí của điểm A để tam giác AEF có diện tích lớn nhất ?
Cho đường tròn tâm O và dây cung BC. Điểm A di chuyển trên cung lớn BC sao cho tam giác ABC có 3 góc nhọn. Đường cao BE, CF của tam giác ABC cắt nhau tại H và cắt đường tròn theo thứ tự tại M và N. Cho cung BC nhỏ có số đo bằng 120 độ. Tính tỉ số diện tích của tam giác AEF và tứ giác BCEF
Cho đường tròn (O; R) có dây BC cố định không đi qua tâm. Trên cung lớn BC lấy điểm A sao cho tam giác ABC nhọn. Đường cao BM và CN của tam giác ABC cắt nhau tại H.
a) Chứng minh rằng tứ giác ANHM nội tiếp
b) Chứng minh rằng : BN.BA + CM. CA = BC2
Cho tam giác ABC nhọn nội tiếp (O;R). Có các đường cao AD,BE,CF, H là trực tâm tam giác ABC. Kẻ đường kính AK.
c) Khi BC và (O) cố định , BC=a. Tìm vị trí của A để P= DE+EF+DF lớn nhất, tìm GTLN theo a và R
Cho đoạn thẳng BC cố định, A là điểm di động sao cho tam giác ABC nhọn. AA' là đường cao và H là trực tâm của tam giác ABC. Xác định vị trí diểm A để AA'.HA' đạt giá trị lớn nhất.
cho tam giác ABC (AC<BC) nội tiếp đg tròn tâm O đg kính AB. kẻ CH vuông góc với AB(H thuộc AB). trên cung nhỏ BC lấy điểm E bất kì, gọi giao điểm của AE với CH là F
1, chứng minh tứ giác HFEB nội tiếp đg tròn
2, chứng minh AC2 = AE.AF
3, gọi I là giao điểm của BC với AE,K là hình chiếu vuông góc của I trên AB tìm vị trí điểm E trên cung nhỉ BC để KE + KC đạt giá trị lớn nhất
Cho tam giác nhọn ABC có AB>AC. Gọi M là trung điểm của BC; H là trực tâm;AD,BE,CF là các đường cao của tam giác ABC. Kí hiệu (C1) và (C2) lần lượt là đường tròn ngoại tiếp tam giác A EF và DKE, với K là giao điểm của EF và BC. CMR: ME là tiếp tuyến chung của (C1) và (C2) Giúp gấp.
Cho đường tròn (O;R), dây BC cố định, A là điểm tùy ý trên cung lớn BC; BM,CN là hai đường cao; Khi A chuyển động trên cung lớn BC của đường tròn (O) thì tâm I đường tròn ngoại tiếp tam giác AMN chuyển động trên đường nào.
Cho đoạn thẳng BC cố định. A là điểm di động sao cho tam giác ABC nhọn. Kẻ AM là đường cao và H là trực tâm của tam giác ABC. Xác định vị trí của điểm A để AM.MH đạt giá trị lớn nhất.