Pt đường thẳng d' qua M và vuông góc d:
\(4\left(x-1\right)-3\left(y-2\right)=0\Leftrightarrow4x-3y+2=0\)
H là giao điểm d và d' nên tọa độ thỏa: \(\left\{{}\begin{matrix}3x+4y-10=0\\4x-3y+2=0\end{matrix}\right.\) \(\Rightarrow H\left(\frac{22}{25};\frac{46}{25}\right)\)
M' đối xứng M qua d \(\Leftrightarrow\) H là trung điểm MM'
\(\Rightarrow\left\{{}\begin{matrix}x_{M'}=2x_H-x_M=\frac{19}{25}\\y_{M'}=2y_H-y_M=\frac{42}{25}\end{matrix}\right.\) \(\Rightarrow M'\left(\frac{19}{25};\frac{42}{25}\right)\)