Không đủ điều kiện để chứng minh đẳng thức trên bạn nhé.
Không đủ điều kiện để chứng minh đẳng thức trên bạn nhé.
Cho tam giác ABC, O là điểm bất kì nằm tring tamm giác. Các tia AO, BO, CO cắt BC, CA, AB tại P, Q, R. Chứng minh: \(\sqrt{\dfrac{OA}{OP}}+\sqrt{\dfrac{OB}{OQ}}+\sqrt{\dfrac{OC}{OR}}\ge3\sqrt{2}\)
Cho tam giác ABC và O là điểm bất kì nằm trong tam giác. Các tia AO, BO, CO cắt BC, CA, AB lần lượt tại P, Q, R. Chứng minh rằng:
a) \(\dfrac{OP}{AP}+\dfrac{OQ}{BQ}+\dfrac{OR}{CR}=1\)
b) \(\dfrac{AP}{OP}+\dfrac{BQ}{OQ}+\dfrac{CR}{OR}\ge9\)
c) Trong 3 tỉ số: \(\dfrac{OA}{OP},\dfrac{OB}{OQ},\dfrac{OC}{OR}\) có một tỉ số không nhỏ hơn 2, có một tỉ số không lớn hơn 2
Cho tam giác ABC nhọn và một điểm O nằm trong tam giác. Các tia AO, BO, CO lần lượt cắt BC, AC, AB tại M, N.
Chứng minh: \(\dfrac{AM}{OM}+\dfrac{BN}{ON}+\dfrac{CP}{OP}\ge9\)
Cho tam giác ABC và điểm M nằm trong tam giác. Qua M kẻ đường thẳng DE, IJ, FG tương ứng song song với các cạnh BC, CA, AB (G, I thuộc BC; E, F thuộc CA; D, I thuộc AB). Chứng minh: \(S_{AIMF}+S_{BGMD}+S_{CEMJ}\le\dfrac{2}{3}S_{ABC}\)
Cho đường tròn (O) nội tiếp tam giác ABC với các tiếp điểm là D; E; F lần lượt thuộc các cạnh BC; CA; AB. Chứng minh rằng tích các khoảng cách hạ từ một điểm P bất kì thuộc đường tròn (O) đến các cạnh của tam giác ABC bằng tích các khoảng cách từ điểm P đến các cạnh của tam giác DEF
ôCh tam giác ABC với tâm O. Gọi M là điểm bất kì bên trong tam giác ABC. Kẻ MH\(\perp\)BC, MK\(\perp\)AC, MI\(\perp\)AB.
1. Chứng minh rằng: MH+MK+MI=h (h là chiều cao của tam giác ABC).
2. Đường thẳng MO lần lượt cắt các cạnh BC, CA, AB tại A', B', C'.
Chứng minh rằng: \(\dfrac{MA'}{OA'}+\dfrac{MB'}{OB'}+\dfrac{MC'}{OC'}=3\)
cho tam giác ABC nhọn và O là một điểm nằm trong tam giác . các tia AO,BO,CO lần lượt cắt BC.AC,AB tại M,N,P . chứng minh:\(\dfrac{AM}{OM}\)+\(\dfrac{BN}{ON}\)+\(\dfrac{CP}{OP}\)≥9
Cho tam giác ABC , O là 1 điểm bất kỳ nằm trong tam giác ABC . Kéo dài AO, BO, CO lần lượt cắt các cạnh BC, CA, AB tại M, N, P. Cm AO/AM+BO/BN+CO/CP=2
Giải chi tiết giúp mình nha
Cho tam giác ABC có AB = 9cm ; AC = 12cm và BC = 16cm. Các đường phân giác AD, BE, CF cắt nhau tại O. Tính giá trị của\(\dfrac{OA}{OD}.\dfrac{OB}{OE}.\dfrac{OC}{\text{OF}}\)