ta có :\(\dfrac{y+z-2015x}{x}=\dfrac{z+x-2015y}{y}=\dfrac{z+y-2015z}{z}\)
=>\(\left(\dfrac{y+z-2015}{x}+2016\right)=\left(\dfrac{z+x-2015y}{y}+2016\right)=\left(\dfrac{x+y-2015z}{z}+2016\right)\)
(=)\(\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}=\dfrac{x+y+z}{z}\)
*Nếu x+y+z\(\ne\)0
=>\(\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\)
=>\(P=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)\)=1.1.1=1
*Nếu x+y+z=0
=>x=y=z
=>\(P=\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)\)=2.2.2=8