Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=\dfrac{a+b+c+d}{b+c+d+a}=1\)
\(\Rightarrow a=b=c=d\)
\(\Rightarrow\dfrac{a^{20}.b^{11}.c^{2011}}{d^{2042}}=\dfrac{a^{20}.a^{11}.a^{2011}}{a^{2042}}=\dfrac{a^{2042}}{a^{2042}}=1\)
Vậy ...
+, Xét \(a+b+c+d=0\) ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}\)
\(\Rightarrow\left\{{}\begin{matrix}ac=b^2\\bd=c^2\\ac=d^2\end{matrix}\right.\Rightarrow a=b=c=d\)(1)
Thay (1) vào biểu thức cần tìm ta được:
\(\dfrac{a^{20}.a^{11}.a^{2011}}{a^{2042}}=\dfrac{a^{2042}}{a^{2042}}=1\)(*)
+, Xét \(a+b+c+d\ne0\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}=\dfrac{a+b+c+d}{b+c+d+a}=1\)
\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=d\\d=a\end{matrix}\right.\Rightarrow a=b=c=d\)(2)
Thay (2) vào biểu thức cần tìm ta được:
\(\dfrac{a^{20}.a^{11}.a^{2011}}{a^{2042}}=\dfrac{a^{2042}}{a^{2042}}=1\)(**)
Từ (*) và (**) suy ra \(\dfrac{a^{20}.a^{11}.a^{2011}}{a^{2042}}=1\)
Vậy............
Chúc bạn học tốt!!!
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{a}\)
\(=\dfrac{a+b+c+d}{b+c+d+a}=1\)
\(\Rightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=d\\d=a\end{matrix}\right.\)
\(\Rightarrow\dfrac{a^{20}.b^{11}.c^{2011}}{d^{2042}}=\dfrac{d^{20}.d^{11}.d^{2011}}{d^{2042}}=\dfrac{d^{2042}}{d^{2042}}=1\)