Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\) (với \(b+c+d\ne0\))
Đặt: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}=t\)
Ta có:
\(\left\{{}\begin{matrix}\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=t.t.t=\dfrac{a}{d}=t^3\\\left(\dfrac{a+b+c}{b+c+d}\right)^3=t^3\end{matrix}\right.\Rightarrowđpcm\)