Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Tư (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
Xét ΔAHB vuông tại H có HD là đường cao
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao
nên \(AE\cdot AC=AH^2\left(2\right)\)
Tư (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
Cho tam giác ABC vuông tại A và có đường cao AH
a) Khi AH = 12cm ; AB = 15cm . Tính AC, BC và số đo
BAH( làm tròn đến độ )
b) Gọi D ; E lần lượt là hình chiếu của H trên AB ; AC .
Chứng minh : HB.HC = AE.AC=AD.AB
Cho tam giác ABC vuông tại A có AC>AB và đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC.
1) Chứng minh AD.AB = AE.AC và tam giác ADE đồng dạng với tam giác ACB.
2) Cho biết BH = 2cm, CH = 4,5cm. Tính:
a) Độ dài đoạn thẳng DE.
b) Số đo của góc ABC.
c) Diện tích tam giác ADE.
Cho △ABC vuông tại A. biết AB = 3 cm, BC = 5 cm.
a) Giải △ABC vuông (số đo góc làm tròn đến độ)
b) Từ B kẻ đường thắng vuông góc với BC, đường thẳng này cắt AC tại D. Tính AD, BD.
c) Gọi E, F lần lượt là hình chiếu của A trên BC và BD. Chứng minh: BF.BD=BE.BC
Cho ∆ABC vuông tại A, đường cao AH. Biết HB=4cm, CH=9cm. Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a, Tính DE
b, Các đường thẳng vuông góc với DE tại D và E lần lượt cắt BC tại M và N. Chứng minh MN=1/2BC
Cho ΔABC vuông tại A, có \(\widehat{ABC}=30\text{° }\). Gọi H là chân đường cao kẻ từ A của ΔABC. Hai điểm I, M lần lượt là trung điểm của Ah và AI. Điểm E là chân đường cao kẻ từ H của ΔBHM.
a) Chứng minh: \(\dfrac{HC}{HB}=\dfrac{MA}{MH}\)
b) Tính số đo \(\widehat{AEB}\)
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D và E là hình chiếu của H lên AB và AC. Biết AB= 2cm, BC= 6cm
a)Tính AH và BCA
b)Chứng minh AD.AB=AK.AC và ADK=ACB
Cho tam giác ABC vuông tại A (AB < AC) đường cao AH, các đường phân giác trong BE, CF cắt nhau tại I, gọi M,N lần lượt là chân đường cao hạ từ E, F lên BC, K là giao điểm của AN với BI, L là giao điểm của AM với CI, D là chân đường cao hạ từ I lên BC.
1. CM: Tam giác DKL vuông cân
2. CM: AI2 = HK2 + HL2
3. Gọi AH cắt EF tại S. CM: DKSL là hình vuông
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D và E lần lượt là hình chiếu của điểm H trên AB và AC.
BH = 4 cm, HC = 9cm.
a) Tính DE.
b) Cm: AD.AB = AE.AC
Cho \(\Delta ABC\) có AB = 6cm,AC=8cm,BC=10cm
a, Tính \(\widehat{B}\),\(\widehat{C}\), và độ dài đường cao AH của \(\Delta ABC\)
b, D và E lần lượt là hình chiếu vuông góc của H trên AB và AC.CMR AD.AB=AE.AC từ đó suy ra \(\Delta ABC\sim\Delta AED\)
c, C/m : \(AB+AC\le\sqrt{2}BC\)