Cho \(\Delta\)ABC có ba góc nhọn (AB<AC). Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao của CD và BE, K là giao của AB và DC.
a. CMR: \(\Delta\)ADC=\(\Delta\)ABE
b. CMR: Góc DIB=60 độ
c. Gọi M và N lần lượt là trung điểm của CD vả BE. Chứng minh rằng \(\Delta\)AMN đều.
cho tam giác ABC cân tại A, lấy điểm D trên cạnh AB, lấy điểm E trên cạnh AC sao cho BD=CE. Chứng mình rằng
a) DE // BC
b) \(\Delta\)ABE = \(\Delta\)ACD
c) \(\Delta\)BID=\(\Delta\)CIE ( I là giao điểm của BE và CD )
d) AI là phân giác của góc BAC
e) AI \(\perp\) BC
f) tìm vị trí D,E để BD=DE=EC
Cho tam giác ABC có ba góc nhọn (AB < AC). Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao điểm của CD và BE, K là giao của AB và DC.
a) Chứng minh rằng:
b) Chứng minh rằng
c) Gọi M và N lần lượt là trung điểm của CD và BE. Chứng minh rằng đều
d) Chứng minh rằng IA là phân giác của góc DIE
Cho \(\Delta\) ABC nhọn. Ở ngoài tam giác, vẽ các \(\Delta\) vuông cân tại A là \(\Delta\) ABD, \(\Delta\) ACE. Chứng minh rằng:
a) DC = BE
b) DC \(\perp\) BE
Cho \(\Delta\)\(ABC\) vuông cân tại \(A\). Gọi \(D\) là trung điểm của \(BC\)
a) CM: \(\Delta\)\(ABD\) và \(\Delta\)\(ACD\) là tam giác vuông cân
b) CM: \(DA=DB=DC\)
Giúp với, ko cần vẽ hình (chỉ cần làm hết)
2. Cho ΔABC vuông tại A có AB = 3cm, BC = 5cm.
a) Tính độ dài đoạn AC.
b) Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Chứng minh ΔADC = ΔABC.
c) Gọi M là trung điểm của CD. Qua D vẽ đường thẳng song song với BC cắt BM tại E.
Chứng minh ΔCDE cân tại D.
d) Gọi I là giao điểm của AC và BE. Chứng minh BC + BD > 6.IM.
cho tam giác nhọn ABC ( AB=AC ). gọi M là trung điểm BC. trên tia đối của tia MA lấy D sao cho MD=MA
a, chứng minh Δ ABM= ΔDCM
b, kẻ AH vuông góc với BC ( Hϵ BC ). vẽ E sao cho H là trung điểm của EA. chứng minh BE=CD
Cho ΔABC nhọn. Về phía ngoài ΔABC, vẽ các tam giác đều ABD và ACE
a) Chứng minh ΔADC = ΔABE
b) Gọi I là giai điểm của BE và CD. Tính số đo góc BIC
c) Gọi M và N lần lượt là trung điểm CD và BE. Chứng minh ΔAMN đều
Cho \(\Delta\)ABC can o A . tren canh AB lay diem D, tren canh AC lay diem E sao choAD=AE . goiM la giao diem cua BE va CD . cmr
a, BE=CD
b,\(\Delta BMD=\Delta CME\)
c, AM la phan giac goc BAC
d, DE//BC