Cho tam giác ABC có đường tròn nội tiếp tâm I. Đặt AB = c; BC = a; AC = b. CMR \(a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}=\overrightarrow{0}\)
Cho Δ ABC tìm điểm I sao cho
\(a,3\overrightarrow{IA}+2\overrightarrow{IC}=\overrightarrow{0}\)
\(b,\overrightarrow{2IA}+\overrightarrow{3IB}=\overrightarrow{3BC}\)
\(c,\overrightarrow{IA}+\overrightarrow{IB}+2\overrightarrow{IC}=\overrightarrow{0}\)
Cho ΔABC . D , I xác định \(\overrightarrow{3DB}-2x\overrightarrow{DC}=\overrightarrow{0},\overrightarrow{IA}+3\overrightarrow{IB}-2\overrightarrow{IC}=\overrightarrow{0}\)
a, Tính vecto AD thao AB và AC
b, A , D , I thẳng hàng
Bài 1: Cho 4 điểm A B C D. Chứng minh nếu \(\overrightarrow{AB}=\overrightarrow{DC}\) thì \(\overrightarrow{AD}=\overrightarrow{BC}\)
Bài 2: CMR nếu \(\overrightarrow{AB}=\overrightarrow{CD}\) thì \(\overrightarrow{AC}=\overrightarrow{BC}\)
Bài 3: Cho tam giác ABC. Lần lượt vẽ các điểm M N P thỏa mãn \(\overrightarrow{AM}=\overrightarrow{BA},\overrightarrow{BN}=\overrightarrow{CB},\overrightarrow{CP}=\overrightarrow{AC}\). Gọi I là một điểm bất kì, chứng minh \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}=\)\(\overrightarrow{IM}+\overrightarrow{IN}+\overrightarrow{IP}\)
Cho \(\Delta\)ABC. Hãy xác định các điểm I, J, K , L thỏa các đẳng thức sau:
a/ \(2\overrightarrow{IA}-3\overrightarrow{IB}=3\overrightarrow{BC}\)
b/ \(\overrightarrow{JA}+\overrightarrow{JB}+2\overrightarrow{JC}=\overrightarrow{0}\)
c/ \(\overrightarrow{KA}+\overrightarrow{KB}-\overrightarrow{KC}=\overrightarrow{BC}\)
d/ \(\overrightarrow{LA}-2\overrightarrow{LC}=\overrightarrow{AB}-2\overrightarrow{AC}\)
đường tròn nội tiếp (I) của tam giác ABC theo thứ tự tiếp xúc với các cạnh BC,CA,AB tại D,E,F. Chứng minh rằng: \(a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}=\overrightarrow{0}\)
Cho tam giác ABC biết AB = 3; BC = 4: AC = 6. I là tâm đường tròn nội tiếp tam giác ABC. Gọi x, y, z là các số thực dương thỏa mãn \(x\overrightarrow{IA}+y\overrightarrow{IB}+z\overrightarrow{IC}=\overrightarrow{0}\). Tính \(P=\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\)
Cho tam giác ABC đều cạnh a (a>0).
1) D là điểm nằm trong tam giác. Gọi M, N, P lần lượt là hình chiếu vuông góc của D trên cạnh BC, CA, AB. Gọi G và G' lần lượt là trọng tâm các tam giác MNP, ABC. Chứng minh rằng D, G, G' thẳng hàng.
2) Tìm GTNN của biểu thức \(y=3\left|\overrightarrow{IA}+\overrightarrow{IB}-\overrightarrow{IC}\right|+\left|\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}\right|\)theo a khi I thay đổi trên đường thẳng AB.
Cho t/g ABC gọi I , J , K là các điểm thỏa mãn đk : \(\overrightarrow{IB}=3\overrightarrow{IC},\overrightarrow{JA}=-2\overrightarrow{JC},\overrightarrow{KB}+3\overrightarrow{KA}=\overrightarrow{0}\)
a, Phân tích vecto JK theo hai vecto AB và AC
b. Phân tích vecto BC theo AI và JK