giả sử : \(a< b< c\)
\(\Rightarrow a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}=a\overrightarrow{IA}+a\overrightarrow{IB}+x\overrightarrow{IB}+c\overrightarrow{IC}\) với \(a+x=b\)
\(=a\overrightarrow{CI}+x\overrightarrow{IB}+c\overrightarrow{IC}\)
để dàng thấy \(\overrightarrow{CI}\) và \(\overrightarrow{IB}\) tạo nhau 1 góc \(\alpha\ne0\)
\(\Rightarrow a\overrightarrow{CI}+x\overrightarrow{IB}=\overrightarrow{a}\) không cùng phương với \(\overrightarrow{IC}\)
\(\Rightarrow a\overrightarrow{CI}+x\overrightarrow{IB}+c\overrightarrow{IC}\ne\overrightarrow{0}\)
\(\Rightarrow\) đề sai
Hình tự vẽ:
Kẽ AI căt BC tại D.
\(\Rightarrow\dfrac{DB}{DC}=\dfrac{c}{b}\)
\(\Leftrightarrow bDB=cDC\)
\(\Rightarrow b\overrightarrow{BD}=c\overrightarrow{DC}\)
\(\Leftrightarrow b\left(\overrightarrow{ID}-\overrightarrow{IB}\right)=c\left(\overrightarrow{IC}-\overrightarrow{ID}\right)\)
\(\Leftrightarrow\left(b+c\right)\overrightarrow{ID}=b\overrightarrow{IB}+c\overrightarrow{IC}\left(1\right)\)
Ta lại co:
\(\dfrac{ID}{IA}=\dfrac{BD}{BA}=\dfrac{CD}{CA}=\dfrac{BD+CD}{BA+CA}=\dfrac{a}{b+c}\)
\(\Rightarrow\left(b+c\right)\overrightarrow{ID}=-a\overrightarrow{IA}\left(2\right)\)
Từ (1) và (2) ta co ĐPCM