Cho \(\Delta\)ABC. Hãy xác định các điểm I, J, K , L thỏa các đẳng thức sau:
a/ \(2\overrightarrow{IA}-3\overrightarrow{IB}=3\overrightarrow{BC}\)
b/ \(\overrightarrow{JA}+\overrightarrow{JB}+2\overrightarrow{JC}=\overrightarrow{0}\)
c/ \(\overrightarrow{KA}+\overrightarrow{KB}-\overrightarrow{KC}=\overrightarrow{BC}\)
d/ \(\overrightarrow{LA}-2\overrightarrow{LC}=\overrightarrow{AB}-2\overrightarrow{AC}\)
gọi G là trọng tâm của tam giác ABC . gọi I, J thỏa \(\overrightarrow{IA}=2\overrightarrow{IB}\) , \(3\overrightarrow{JA}+2\overrightarrow{JC}=\overrightarrow{0}\)
a, phân tích \(\overrightarrow{IJ}\) theo \(\overrightarrow{c}=\overrightarrow{AB}\), \(\overrightarrow{b}=\overrightarrow{AC}\)
b, chứng minh rằng IJ qua G
Cho ΔABC . D , I xác định \(\overrightarrow{3DB}-2x\overrightarrow{DC}=\overrightarrow{0},\overrightarrow{IA}+3\overrightarrow{IB}-2\overrightarrow{IC}=\overrightarrow{0}\)
a, Tính vecto AD thao AB và AC
b, A , D , I thẳng hàng
Cho tam giác ABC, hai điểm I, J thỏa:\(\overrightarrow{IA}+3\overrightarrow{IC}=\overrightarrow{0},\overrightarrow{JA}+2\overrightarrow{JB}+3\overrightarrow{JC}=\overrightarrow{0}\).
Chứng minh 3 điểm B,I,J thẳng hàng
gọi G là trọng tâm của tam giác ABC và I,J thỏa mãn \(\overrightarrow{IA}=2\overrightarrow{IB}\), \(3\overrightarrow{JA}+2\overrightarrow{JC}=\overrightarrow{0}\)
a, Phân tích \(\overrightarrow{IJ}\) theo \(\overrightarrow{AB}\) , \(\overrightarrow{AC}\)
b, chứng minh rằng IJ qua G
Cho tam giác ABC. Gọi I nằm trên cạnh BC sao cho 2CI=3BI và J nằm trên tia đối của BC sao cho 5JB=2JC. Tính vecto AI và AJ theo \(\overrightarrow{a}=\overrightarrow{AB},\overrightarrow{b}=\overrightarrow{AC}\)
cho tam giác ABC . gọi M là điểm thuộc cạnh AB , N là điểm thuộc cạnh AC sao cho AM =\(\dfrac{1}{3}\) AB , AN =\(\dfrac{3}{4}\) AC . gọi O là giao điểm của CM và BN
a) Biểu diễn vecto \(\overrightarrow{AO}\) theo 2 vecto \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\)
b) trên đường thẳng BC lấy E . Đặt \(\overrightarrow{BE}\)= x.\(\overrightarrow{BC}\) . tìm x để A,O ,E thẳng hàng
cho ΔABC . gọi I,J,K là các điểm cố định bởi \(\overrightarrow{JA}+\overrightarrow{JC}=\overrightarrow{0}\), \(\overrightarrow{IB}=2\overrightarrow{AI},\overrightarrow{BK}=2\overrightarrow{BC}\)
Cho H là điểm luôn thay đổi ,L là điểm xác định bởi \(\overrightarrow{HL}=3\overrightarrow{HC}+4\overrightarrow{HB}\). chứng minh rẳng đường thẳng HL luôn đi qua 1 điểm cố định
Cho 1 tam giác ABC gọi M , N là các điểm sao cho \(\overrightarrow{MA}=2\overrightarrow{MB}\) , \(\overrightarrow{3NA}+2\overrightarrow{NC}=\overrightarrow{0}\)
a/ Dựng 2 điểm MN
b/ Tính theo 2 vecto AB và AC
c/ C/m M ,N ,G thẳng hàng