gọi G là trọng tâm của tam giác ABC . gọi I, J thỏa \(\overrightarrow{IA}=2\overrightarrow{IB}\) , \(3\overrightarrow{JA}+2\overrightarrow{JC}=\overrightarrow{0}\)
a, phân tích \(\overrightarrow{IJ}\) theo \(\overrightarrow{c}=\overrightarrow{AB}\), \(\overrightarrow{b}=\overrightarrow{AC}\)
b, chứng minh rằng IJ qua G
Cho tam giác ABC. \(\overrightarrow{IA}\) =\(\overrightarrow{IB}\) ; \(\overrightarrow{JA}\)= -\(\frac{2}{3}\) \(\overrightarrow{JC}\)
a) \(\overrightarrow{IJ}\) =\(\frac{2}{5}\)\(\overrightarrow{AC}\)- 2 \(\overrightarrow{AB}\)
b) Tính \(\overrightarrow{IG}\) theo\(\overrightarrow{AB}\), \(\overrightarrow{AC}\) ( G là trọng tâm tam giác ABC )
Cho tam giác ABC, hai điểm I, J thỏa:\(\overrightarrow{IA}+3\overrightarrow{IC}=\overrightarrow{0},\overrightarrow{JA}+2\overrightarrow{JB}+3\overrightarrow{JC}=\overrightarrow{0}\).
Chứng minh 3 điểm B,I,J thẳng hàng
Cho t/g ABC gọi I , J , K là các điểm thỏa mãn đk : \(\overrightarrow{IB}=3\overrightarrow{IC},\overrightarrow{JA}=-2\overrightarrow{JC},\overrightarrow{KB}+3\overrightarrow{KA}=\overrightarrow{0}\)
a, Phân tích vecto JK theo hai vecto AB và AC
b. Phân tích vecto BC theo AI và JK
cho hình bình hành ABCD tâm O . gọi I,J lần lượt là các điểm thỏa mãn \(\overrightarrow{IA}+3\overrightarrow{IB}=\overrightarrow{0}\), \(\overrightarrow{JA}=3\overrightarrow{JD}\). phân tích \(\overrightarrow{IJ}và\overrightarrow{IO}\) theo \(\overrightarrow{AB},\overrightarrow{AD}\)
Cho \(\Delta\)ABC. Hãy xác định các điểm I, J, K , L thỏa các đẳng thức sau:
a/ \(2\overrightarrow{IA}-3\overrightarrow{IB}=3\overrightarrow{BC}\)
b/ \(\overrightarrow{JA}+\overrightarrow{JB}+2\overrightarrow{JC}=\overrightarrow{0}\)
c/ \(\overrightarrow{KA}+\overrightarrow{KB}-\overrightarrow{KC}=\overrightarrow{BC}\)
d/ \(\overrightarrow{LA}-2\overrightarrow{LC}=\overrightarrow{AB}-2\overrightarrow{AC}\)
Cho tam giác ABC có trọng tâm G.Gọi I,J lần lượt là 2 điểm thỏa mãn \(\overrightarrow{IB}\) =\(\overrightarrow{BA}\) , \(\overrightarrow{JA}\) =\(\frac{-2}{3}\) \(\overrightarrow{JC}\)
a, CMR \(\overrightarrow{IJ}\) =\(\frac{2}{5}\) \(\overrightarrow{AC}\)-\(2\overrightarrow{AB}\)
b, Tính \(\overrightarrow{IG}\) theo \(\overrightarrow{AB}\), \(\overrightarrow{AC}\)
HELP ME SẮP PHẢI NỘP RỒI
Cho tam giác ABC đều cạnh a (a>0).
1) D là điểm nằm trong tam giác. Gọi M, N, P lần lượt là hình chiếu vuông góc của D trên cạnh BC, CA, AB. Gọi G và G' lần lượt là trọng tâm các tam giác MNP, ABC. Chứng minh rằng D, G, G' thẳng hàng.
2) Tìm GTNN của biểu thức \(y=3\left|\overrightarrow{IA}+\overrightarrow{IB}-\overrightarrow{IC}\right|+\left|\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC}\right|\)theo a khi I thay đổi trên đường thẳng AB.
cho ΔABC . gọi I,J,K là các điểm cố định bởi \(\overrightarrow{JA}+\overrightarrow{JC}=\overrightarrow{0}\), \(\overrightarrow{IB}=2\overrightarrow{AI},\overrightarrow{BK}=2\overrightarrow{BC}\)
Cho H là điểm luôn thay đổi ,L là điểm xác định bởi \(\overrightarrow{HL}=3\overrightarrow{HC}+4\overrightarrow{HB}\). chứng minh rẳng đường thẳng HL luôn đi qua 1 điểm cố định