cho \(\Delta ABC\perp\) tại A . Trên tia đối của tia CA lấy K sao cho CK = CA , từ K kẻ đường thẳng \(\perp AC\) cắt BC tại F c/m
a) AB//KE
b) \(\widehat{ABC}=\widehat{KEC};BC=CE\)
1. Cho \(\Delta ABC\) vuông tại A. Từ một điểm K bất kì thuộc cạnh BC vẽ KH \(\perp\) AC. Trên tia đối của tia HK lấy điểm I sao cho HI = HK. C/m:
a) AB // HK
b) \(\Delta AKI\) cân
c) \(\widehat{BAK}=\widehat{AIK}\)
d) \(\Delta AIC=\Delta AKC\)
2. Cho tam giác nhọn ABC. Vẽ ra phía ngoài \(\Delta ABC\) các tam giác đều ABD và ACE. Gọi M là giao điểm của DC và BE. C/m rằng:
a) \(\Delta ABE=\Delta ADC\)
b) \(\widehat{BMC}=120^0\)
3. Cho \(\Delta ABC\) có CA = CB = 10cm, AB = 12cm. Kẻ CI \(\perp\) AB (I thuộc AB)
a) C/m rằng IA = IB
b) Tính độ dài CI
c) Kẻ HI \(\perp\) AC (H thuộc AC), kẻ IK \(\perp\) BC (K thuộc BC). So sánh các độ dài IH và IK.
4. Cho \(\Delta\) ABC vuông tại A có \(\widehat{B}\) = 600.Vẽ AH \(\perp\) BC (H thuộc BC)
a) So sánh AB và AC; BH và HC
b) Lấy điểm D thuộc tia đối của tia HA sao cho HD = HA. C/m: \(\Delta AHC=\Delta DHC\)
c) Tính số đo của \(\widehat{BDC}\)
Cho \(\Delta\) ABC cân tại A (A>90 \(^o\) ) . Trên tia đối của AB,AC lấy lần lượt 2 điểm M,N sao cho AM=AN<AB.Tia BN cắt tia CM tại O.
CMR:a, \(\Delta\) ABN=\(\Delta\) ACM. Từ đó suy ra \(\widehat{ONC}\) =\(\widehat{OMB}\)
b,OM=ON
c,OA là tia phân giác của \(\widehat{BOC}\)
cho \(\Delta\)ABC cân tại A, gọi M là trung điểm của BC,kẻ MH \(\perp AB\)\(\left(H\in AB\right)\)Trên tia đối MH lấy điểm K\(|\)MH=MK.
a) chứng minh CK=BH
b)Trên đoạn AH lấy E, trên AC lấy F sao cho \(\widehat{AEF}\)=\(2\widehat{HME}\). C/m \(\widehat{EFM}\)=\(\widehat{MFC}\)
c) Gọi O là giao điểm của 3 dường phân giác trong \(\Delta\)ABC , đặt BC=a, OA=a',AC=b,OB=b'. C/m: a+a'>b+b' nếu a>b.
\(\Delta ABC\) CÓ \(\widehat{A}=90^o\) ; BC=2AB; \(D\in AC\) sao cho \(\widehat{ABD}=\frac{1}{3}\widehat{ABC}\) ;\(E\in\) cạnh AB sao cho \(\widehat{ACE}=\frac{1}{3}\widehat{ACB}\) ; DB cắt CE tại F . I và K thứ tự là hình chiếu của F trên BC và AC. Lấy G;H sao cho I là trung điểm của FG. K là trung điểm của FH
a) C/m H;G;D thẳng hàng
b) C/m tam giác DEF cân
Cho \(\Delta ABC\) cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho \(\widehat{BAD}=\widehat{CAE}\) .Kẻ BH vuông góc với AD \(\left(H\varepsilon AD\right)\). Kẻ CK vuông góc với AE \(\left(K\varepsilon AE\right)\)CM
a,BD =CE
b,BH=CK
MÌNH ĐANG CẦN GẤP, GIÚP MÌNH NHA
Cho tam giác ABC có \(\widehat{B}=2\widehat{C}\) . Tia phân giác góc B cắt AC ở D . Trên tia đối của tia BD lấy điểm E sao cho BE=AC . Trên tia đối của tia CB lấy điểm K sao cho CK = AB . Chứng minh AE = AK
Cho \(\Delta\) ABC có \(\widehat{B}=\widehat{C}\). trên tia đối CB lấy điểm E . trên tia đối BC lấy điểm F sao cho BF = CE biết AB = AC
a) chứng minh \(\Delta ACE=\Delta ABF\)
b)chứng minh \(\Delta ABE=\Delta ACF\)
Cho tam giác ABC có AB=AC và M là trung điểm của BC. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE
a) Chứng minh tam giác ABM= tam giác ACM từ đó suy ra AM vuông góc vs BC
b) Chứng minh tam giác ABD= tam giác ACE từ đó suy ra AM là tia phân giác của góc DAE
c) Kẻ BK vuông góc AD( K thuộc AD) trên tia đối của tia BK lấy điểm H sao cho BH=AE, trên tia đối của tia AM lấy điểm N sao cho AN=CE, Chứng minh góc MAD= góc MBH