a: Ta có: AB\(\perp\)AC
KE\(\perp\)AC
Do đó: AB//KE
b: Ta có: AB//KE
nên \(\widehat{ABC}=\widehat{KEC}\)
Xét ΔACB vuông tại A và ΔKCE vuông tại K có
CA=CK
\(\widehat{ACB}=\widehat{KCE}\)
Do đó:ΔACB=ΔKCE
Suy ra:CB=CE
a: Ta có: AB\(\perp\)AC
KE\(\perp\)AC
Do đó: AB//KE
b: Ta có: AB//KE
nên \(\widehat{ABC}=\widehat{KEC}\)
Xét ΔACB vuông tại A và ΔKCE vuông tại K có
CA=CK
\(\widehat{ACB}=\widehat{KCE}\)
Do đó:ΔACB=ΔKCE
Suy ra:CB=CE
cho tam giác ABC cân tại A. trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho CE=BD. các đường thẳng vuông góc với bc kẻ từ D cắt AB tại M và kẻ từ E cắt AC tại N.
a, gọi I là giao điểm của MN và BC, đường thẳng vuông góc với MN tại I tại đường thẳng AH tại K (H là trung điểm của BC) cmr: tam giác ABC cân.
c, cmr CK \(\perp\)AN.
BT1: cho \(\Delta ABC\) nhọn có AB < AC, kẻ \(CE\perp AB,BD\perp AC\) .Trên tia đối của BD, CE lần lượt lấy các điểm I, K sao cho BI=AB; CK=AB.
a) chứng minh : \(\widehat{ABI}=\widehat{ACK}\).
b) chứng minh : \(\frac{IK}{AI}=\sqrt{2}\).
Bt2: cho \(\Delta ABC\) vuông cân tại A, kẻ \(AK\perp BC\) lấy hai điểm E và F sao cho A là chung điểm của BE, C là trung điểm của AF.
a) Tính \(\frac{AK.AE}{KC.CF}\)=?
b) Tính \(\widehat{KFE}\) ?
giúp mình với ....~~!!!
Bài 1: Cho ∆ABC cân tại Â(Â<90 độ) ,vẽ BD ⊥ AC và CE ⊥ AB. Gọi H là giao điểm của BD và CE.
a, Cmr: ∆ ABD=∆ ACE b, Cmr: ∆ AED cân và ED//BC c, Cmr: AH là đường trung trực của ED
d, Trên tia đối của tia DB lấy điểm K sao cho DK=DB. Cmr: ∠ECB=∠DKC
Bài 2: Cho ∆ ABC cân tại A. Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD=CE. Vẽ BH và EK cùng vuông góc với đường thẳng BC. Cmr: a, HB=CK b, ∠AHB=∠ AKC c,HK// DE d,∆ AHE= ∆ AKD
d, Gọi I là giao điểm của DK và EH. Cmr AI ⊥ DE
Bài 3: Cho ∆ ABC có B= 90 độ vẽ trung tuyến AM. Trên tia đối của tia MA lấy điểm E sao cho ME=MA.Cmr:
a, AC> CE b, BÂM> MÂC c, BE//AC d, EC⊥BC
Bài 4: Cho ∆ ABC có Â=90 độ Đường trung trực của AB cắt AB tại E và BC tại F. Cmr:
a, FA=FB b,Từ F vẽ FH ⊥ AC(H thuộc AC) . Cmr FH⊥EF c, FH=AE d, EH= BC/2; EH//BC
Bài 5:Cho ∆ ABC có Â=90 độ ; AC> AB.Kẻ AH⊥BC. Trên BC lấy điểm D sao cho HD=HB. Kẻ CE vuông góc với AD kéo dài.Cmr:
a,∆ BAD cân b, CB là phân giác của ∠ACE c, Gọi giao điểm của AH và CE là K. Cmr: KD//AB
d, Tìm điều kiện của ∆ ABC để ∆ AKC đều
Cho \(\Delta ABC\) vuông tại A, vẽ \(AH\perp BC\). Trên BC lấy N sao cho BN = BA, trên BC lấy M sao cho CM = CA. Tia phân giác \(\widehat{ABC}\) cắt AM tại I và cắt AN tại D, tia phân giác \(\widehat{ACB}\) cắt AN tại K và cắt AM tại E. Gọi O là giao điểm của BD và CE
a) Chứng minh \(BD\perp AN,CE\perp AM\)
b) Chứng minh BD // MK
c) Chứng minh IK = OA
Chỉ cần làm phần b, c thôi nhé!
1. Cho \(\Delta ABC\) vuông tại A. Từ một điểm K bất kì thuộc cạnh BC vẽ KH \(\perp\) AC. Trên tia đối của tia HK lấy điểm I sao cho HI = HK. C/m:
a) AB // HK
b) \(\Delta AKI\) cân
c) \(\widehat{BAK}=\widehat{AIK}\)
d) \(\Delta AIC=\Delta AKC\)
2. Cho tam giác nhọn ABC. Vẽ ra phía ngoài \(\Delta ABC\) các tam giác đều ABD và ACE. Gọi M là giao điểm của DC và BE. C/m rằng:
a) \(\Delta ABE=\Delta ADC\)
b) \(\widehat{BMC}=120^0\)
3. Cho \(\Delta ABC\) có CA = CB = 10cm, AB = 12cm. Kẻ CI \(\perp\) AB (I thuộc AB)
a) C/m rằng IA = IB
b) Tính độ dài CI
c) Kẻ HI \(\perp\) AC (H thuộc AC), kẻ IK \(\perp\) BC (K thuộc BC). So sánh các độ dài IH và IK.
4. Cho \(\Delta\) ABC vuông tại A có \(\widehat{B}\) = 600.Vẽ AH \(\perp\) BC (H thuộc BC)
a) So sánh AB và AC; BH và HC
b) Lấy điểm D thuộc tia đối của tia HA sao cho HD = HA. C/m: \(\Delta AHC=\Delta DHC\)
c) Tính số đo của \(\widehat{BDC}\)
Bài 1 : Cho \(\Delta ABC\)đều , lấy điểm D , E , F theo thứ tự \(\in\)các cạnh AB , BC , CA sao cho AD = BE = CF . Chứng minh \(\Delta DEF\)đều .
Bài 2 : Cho \(\Delta ABC\)phân giác AD , qua D kẻ đường thẳng // với AB cắt AC ở E , qua E kẻ đường thẳng // với BC cắt AB ở K . Chứng minh AE = BK
Bài 3 : Cho \(\Delta ABC\)có \(\widehat{B}=45^o\), \(\widehat{A}=15^o\). Trên tia đối của tia CB lấy D sao cho CD = 2BC . Kẻ \(DE\perp AC\)
a) Chứng minh ED = EB
b) \(\widehat{ADB}=?\)
Bài 4: Cho \(\Delta ABC\), AB<AC . Qua trung điểm D của BC , kẻ đường \(\perp\)với tia phân giác \(\widehat{A}\)cắt AC , AD lần lượt ở M , N
a) Chứng minh BM = CN
b) Tính AM , BM theo AC = b , AB = c
Các bạn làm hết hộ mình 3 bài , nhớ vẽ cả hình nhé !!!
1. Cho \(\Delta ABC\) đều có cạnh là a. Tính diện tích \(\Delta ABC\) theo a.
2. Cho \(\Delta ABC\) cân tại A. Trên tia đối của tia BC lấy điểm D, tia đối của CB lấy điểm E sao cho BD = CE. M là trung điểm của BC.
a) C/m AM là phân giác \(\widehat{DAE}\)
b) Vẽ \(BK\perp AD\left(K\in AD\right)\), \(CF\perp AE\left(F\in AE\right)\) . C/m 3 đường thẳng AM, BK, CF cùng đi qua một điểm.
3. Cho \(\widehat{xOy}\) = 1200. A là điểm thuộc tia phân giác của \(\widehat{xOy}\) . Vẽ \(AB\perp Ox\), \(AC\perp Oy\) .
a) \(\Delta ABC\) là tam giác gì?
b) C/m \(OA\perp BC\)
4. Cho \(\Delta ABC\) , tia phân giác của \(\widehat{ABC}\) cắt AC tại D. Qua D kẻ Dx // AB, Dx cắt BC tại M. Gọi My là tia phân giác \(\widehat{DMC}\) , Bz là tia phân giác ngoài của \(\widehat{B}\) . C/m \(Bz\perp My\) .
5. Cho \(\Delta ABC\) cân tại A, AB = 5cm, BC = 8cm. Kẻ \(AH\perp BC\left(H\in BC\right)\) .
a) C/m HB = HC
b) Tính AH
c) Kẻ \(HD\perp AB,HE\perp AC\) . C/m \(\Delta HDE\) cân.
6. Cho \(\widehat{xOy}\) nhọn. I là một điểm điểm thuộc tia phân giác của \(\widehat{xOy}\) . Kẻ \(IA\perp Ox,IB\perp Oy\)
a) C/m IA = IB. Biết OI = 10cm, AI = 6cm. Tính OA.
b) Gọi K là giao điểm của BI \(\cap\) Ox, M là giao điểm của AI \(\cap\) Oy. So sánh AK và BM.
c) Gọi C là giao điểm của OI và MK. C/m OC \(\perp\) MK
Cho ΔABC cân tại A. Trên cạnh BC lấy D, trên tia đối của CA lấy E sao cho BD = CE. Kẻ DM // AC. I là trung điểm của MC.
a) Chứng minh D, I, E thẳng hàng
b) Kẻ DH và CK cùng vuông góc với BC. Chứng minh BH = CK (H, K thuộc BC)
c) Trên tia đối của BC lấy F, trên tia đối của CB lấy P sao cho BF = CP. Chứng minh AF = AP
Cho ΔABC cân tại A. Trên cạnh BC lấy D, trên tia đối của CA lấy E sao cho BD = CE. Kẻ DM // AC. I là trung điểm của MC.
a) Chứng minh D, I, E thẳng hàng
b) Kẻ DH và CK cùng vuông góc với BC. Chứng minh BH = CK (H, K thuộc BC)
c) Trên tia đối của BC lấy F, trên tia đối của CB lấy P sao cho BF = CP. Chứng minh AF = AP