Cho tam giác ABC có A nhọn,AC=b,AB=c,diện tích S=1/bc tính BC theo b và c
Bài 1: Cho ΔABC, góc A = α (0o < α < 900). Vẽ các đường cao BD và CE
a) CMR: DE = BC . cosA
b) Gọi M là trung điểm BC. Tính α để ΔMDE đều
Bài 2: Cho ΔABC nhọn. Gọi a,b,c lần lượt là độ dài cạnh BC,AC,AB.
a) CMR: \(\frac{\alpha}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)
b) Có thể xảy ra: sinA = sinB - sinC không ?
Cho ΔABC ngoại tiếp (O) tiếp xúc với các cạnh AB,AC,BC lần lượt tại D,E,F.
a, CMR: \(\frac{1}{2}\left(AB+AC+BC\right).R=S_{\Delta ABC}\)
b, CMR : ΔABC vuông nếu 2BF . CF = AB . AC
Cho tam giác ABC.Trên phần kéo dài của các cạnh AB,BC và AC lấy các điểm D,E,F(B nằm giữa A và D; C nằm giữa B và E;A nằm giữa C và F)sao cho BD=AB;CE=BC và AF=AC.Gọi s là diện tích ΔABC.Tính diện tích ΔDEF theo s.
Cho ΔABC cân tại A có AB=AC=a, BC=b. Đường tròn tâm O nội tiếp ABC tiếp xúc với cạnh AB, BC, AC tại D,R,F. Tia BF cắt đường tròn (O) ở điểm thứ 2 I, tia PI cắt BC tại M
1/Cminh: a) Tứ giác CEOF nội tiếp được đường tròn
b) DF//BC
c) \(\frac{BD}{BC}=\frac{BM}{CF}\)
2/ Tính AD và bán kính (O) theo a và b
Cho ΔABC nhọn nội tiếp (O;R). Gọi x,y,z là khoảng cách từ O đến các cạnh BC = a; CA = b; AB = c của ΔABC. CM: \(\sqrt{x}+\sqrt{y}+\sqrt{z}\le3\sqrt{\frac{R}{2}}\)
Cho\(\Delta ABC\) nhọn,BC=a,CA=b,AB=c.
CMR:
\(S_{\Delta ABC}=\frac{1}{2}bc.sinA=\frac{1}{2}ca.sinB=\frac{1}{2}ab.sinC\)
Cho tam giác ABC vuông tại A, có đường cao AH (H thuộc BC). Biết độ dài đoạn AC bằng 5cm, đoạn HC bằng 4cm. Tính độ dài các cạnh AB và BC.
Cho tam giác ABC vuông cân tại A. M là trung điểm cạnh BC. Từ đỉnh M vẽ góc 45 độ sao cho các cạnh củ góc này làn lượt cắt AB, AC tại E và F.
Chmr: \(S_{\Delta MEF}< \frac{1}{4}S_{\Delta ABC}\)