Có thể cách làm của mình sẽ hơi dài dòng bạn chỉnh sửa dùm mình nha:
a) Xét tam giác AEC và tam giác ADB:
Góc A:chung ; \(\widehat{ADB}=\widehat{AEC}\left(=90\right)\) \(\Rightarrow\Delta AEC~\Delta ADB\left(g.g\right)\)
\(\Rightarrow\dfrac{AE}{AC}=\dfrac{AD}{AB}\)(1)
Xét tam giác ADE và tam giác ABC có:(1) và góc A:chung
\(\Rightarrow\Delta ADE~\Delta ABC\left(c.g.c\right)\)\(\Rightarrow\widehat{ADE}=\widehat{ABC}\left(2\right);\widehat{AED}=\widehat{ACB}\left(3\right)\)
Xét tam giác KDC và tam giác EBC:\(\widehat{BEC}=\widehat{DKC}\left(=90\right)\); \(\widehat{KDC}=\widehat{ABC}\left(=\widehat{ADE}\right)\)
\(\Rightarrow\Delta EBC~\Delta KDC\left(g.g\right)\Rightarrow\dfrac{DK}{BE}=\dfrac{CD}{BC}\left(4\right)\)
Tương tự ta có:\(\Delta BHE~\Delta BDC\left(g.g\right)\Rightarrow\dfrac{HE}{CD}=\dfrac{BE}{BC}\Rightarrow\dfrac{HE}{BE}=\dfrac{CD}{BC}\left(5\right)\)
Từ (4) và (5) ta có: KD=HE(đpcm)
b)Xét:\(S_{BHKC}=S_{BEC}+S_{BHE}+S_{EKC}\)
Ta có:\(\Delta BHE~\Delta BDC\Rightarrow\dfrac{S_{BHE}}{S_{BDC}}=\dfrac{BE^2}{BC^2}\left(6\right)\)
Xét tam giác BDC và tam giác EKC có:\(\widehat{BDC}=\widehat{EKC}\left(=90\right)\)
\(\widehat{KEC}=\widehat{DBC}\) (\(\widehat{KEC}+\widehat{AED}=90;\widehat{DBC}+\widehat{DCB}=90;\widehat{DCB}=\widehat{AED}\))
\(\Rightarrow\Delta KEC~\Delta DBC\left(g.g\right)\Rightarrow\dfrac{S_{EKC}}{S_{BDC}}=\dfrac{EC^2}{BC^2}\left(7\right)\)
Từ (6) và (7) có:
\(\dfrac{S_{EKC}+S_{BHE}}{S_{BDC}}=\dfrac{BE^2+EC^2}{BC^2}=1\Leftrightarrow S_{EKC}+S_{BHE}=S_{BDC}\)
Thay vào biểu thức đầu bài:
\(S_{BHKC}=S_{BEC}+S_{BDC}\left(đpcm\right)\)