kẻ thêm MK\(\perp BC\)
ta có \(\Delta ABM=\Delta KBM\left(ch.cgn\right)\)
lí do vì góc B1=góc B2(do BM phân giác),
góc BKM=góc BAM=90\(^o\), cạnh BM chung
từ đó=>AM=MK(các cạnh t ứng)(1)
chứng minh \(\Delta MND=\Delta MAB\left(ch.cgn\right)\)
do góc M1=M2(đối đỉnh), MB=MD(gt), góc DNM=góc BAM(=90 độ)
=>AM=MN(2) từ(1)(2)=>MN=MK
trong tam giác MKC vuông tại K thì cạnh huyền MC lớn nhất
=>MC>MK<=>MC>MN(dpcm)