Gọi giao điểm của AG và BC là H
=>AH⊥BC và H là trung điểm của BC
=>BH=a/2
Xét ΔABH vuông tại H có \(AB^2=AH^2+BH^2\)
\(\Leftrightarrow AH^2=a^2-\dfrac{1}{4}a^2=\dfrac{3}{4}a^2\)
\(\Leftrightarrow AH=\dfrac{a\sqrt{3}}{4}\)
\(\Leftrightarrow AG=\dfrac{2}{3}\cdot\dfrac{a\sqrt{3}}{4}=\dfrac{a\sqrt{3}}{6}\)