a: AN=AC/2
AM=AB/2
mà AB=AC
nên AM=AN
b: Xét tứ giác AGCK có
N là trung điểm chung của CA và GK
=>AGCK là hình bình hành
=>AG//CK
c: BG=2GN
mà GN=1/2GK
nen BG=GK
a: AN=AC/2
AM=AB/2
mà AB=AC
nên AM=AN
b: Xét tứ giác AGCK có
N là trung điểm chung của CA và GK
=>AGCK là hình bình hành
=>AG//CK
c: BG=2GN
mà GN=1/2GK
nen BG=GK
Cho tam giác ABC (cân tại A) trung tuyến AM và CN cắt nhau tại G
a, Chứng minh tam giác ABM = tam giác ACM
b,Trên tia đối của tia NC Lấy một điểm K sao cho NK = NG
Chứng minh tam giác ANG bằng tam giác BNK Từ đó suy ra AG song song KB
c,chứng minh BG=GK
d,Gọi P là giao điểm của BG với AC Chứng minh BC+ AG lớn hơn 2NP
Cho ΔABC có AB = AC và M là trung điểm của BC. Gọi N là trung
điểm của AB, trên tia đối của tia NC lấy điểm K sao cho NK = NC.
a) Chứng minh ΔABM = ΔACM
b) Chứng minh rằng AK = 2.MC
c) Tính số đo của MAK?
Cho tam giác ABC. Gọi I là trung điểm của AC. Trên tia đối tia IB lấy điểm D sao cho ID=IB.
a) Chứng minh: tam giác IAB= tam giác ICD
b) Gọi M là trung điểm BC. AM cắt BI tại G
Chứng minh: BG= 2/3 ID
c) Gọi N là trung điểm CD. AN cắt DI tại K. Chứng minh: BG=GK=KD
Cho ABC có AB < AC. Gọi M là trung điểm của BC, trên tia AM lấy điểm D sao cho
M là trung điểm của AD.
a) Chứng minh = MAB MDC
b) Chứng minh AB // CD và so sánh hai góc MAB và MAC
c) Kẻ AH BC ⊥ tại H, DK BC ⊥ tại K. Chứng minh AH = DK.
d) Chứng minh AD > 2.DK
e*) Trên đoạn thẳng AM lấy điểm G sao cho AG =2.GM Tia BG cắt AC tại N, tia CG cắt
AB tại P. Chứng minh AM+BN+CP>3/4(AB+AC+BC)
Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC (H ∈ BC).Gọi M là trung điểm của BH.Trên tia đối của của tia MA lấy điểm N sao cho MN=MA.
a,chứng minh tam giác AMH bằng tam giác MNB và NB vuông góc với BC.
b,chứng minh AH=NB từ đó suy ra NB<AB
. c,chứng minh góc BAM nhỏ hơn góc góc MAH.
d,Gọi I là trung điểm của NC.Chứng minh A,H,I thẳng hàng
Cho ΔABC có
K là trung điểm của AB. Qua K lần lượt vẽ đường thẳng song song với BC cắt AC tại N và đường thẳng song song với AC cắt BC tại M.
a/ Chứng minh: KN=CM
c/ Trên tia đối của CB lấy điểm D sao cho CD=CM. KD cắt AC tại I. Chứng minh: IN=IC.
d/ Trên tia đối của BA lấy điểm E sao cho BE=BK. Chứng minh: E, M, I thẳng hàng.
Cho ΔABC vuông tại A. Vẽ tia phân giác của góc ABC cắt cạnh AC tại H. Từ H vẽ HM ⊥ BC tại M. Gọi N là giao điểm của tia BA và tia MH.
a) Chứng minh: ΔABH = ΔMBH
b) Chứng minh: ΔAHN = ΔMHC
c) Chứng minh: BH vuông góc NC
d) Gọi K là trung điểm của cạnh NC. Chứng minh ba điểm B, H, K thẳng hàng.
Cho ΔABC cân tại A, kẻ đường cao AP. a) Chứng minh: ΔABP = ΔACP và P là trung điểm của BC. b) Trên tia đối của tia PA lấy điểm N sao cho PA = PN. Chứng minh: ΔAPB và ΔCNP, từ đó suy ra AB // CN c) Cho PE vuông góc AB tại E. Chứng minh PE + AB > PA + PB. |
cho tam giác ABC cân tại A gọi M là trung điểm của BC. Trên Tia đối MA lấy điểm N sao cho MA=MN chứng minh AB//NC chứng minh tam giác ABN cân