a) Xét hai tam giác vuông ABD và ACE ta có:
AB = AC (gt)
 là góc chung
Vậy \(\Delta ABD=\Delta ACE\) (cạnh huyền-góc nhọn) (1)
b) Từ (1) \(\Rightarrow AE=AD\)(2 cạnh tương ứng)
nên \(\Delta AED\) là tam giác cân
c) Ta có : BD \(\perp AC\) (gt)
\(CE\perp AB\) (gt)
nên BD và CE là hai đường cao của \(\Delta ABC\)
Vì H là giao điểm của hai đường cao BD và CE nên AH cũng là đường cao của ED
Mà trong tam giác cân AED đường cao cũng là đường trung trực nên AH là đường trung trực của ED
d) Xét hai tam giác vuông CDK và CDB ta có :
DK = DB (gt)
CD là cạnh góc vuông chung
Vậy \(\Delta CDK=\Delta CDB\)(cạnh góc vuông-cạnh góc vuông) (2)
Từ (2) \(\Rightarrow CB=CK\)(2 cạnh tương ứng) (3)
Từ (1) \(\Rightarrow\) DB = EC (2 cạnh tương ứng)
mà DK = DB (gt)
\(\Rightarrow EC=DK\)(4)
Xét hai tam giác vuông ECB và DKC ta có:
CB = CK (3)
EC = DK (4)
Vậy \(\Delta ECB=\Delta DKC\) (cạnh góc vuông-cạnh huyền) (5)
Từ (5) \(\Rightarrow\widehat{ECB}\) \(=\widehat{DKC}\) (2 góc tương ứng)
''ngonhuminh '' cậu có thể giúp câu hỏi này được không????
Câu hỏi của Nguyễn ĐÌnh Thạch Lam - Toán lớp 7 - Học toán với OnlineMath