cho Δ ABC có AB=AC,AH là tia phân giác của góc A(H thuộc BC)
a, chứng minh Δ AHB=ΔAHC
b, chứng minh góc B = góc C
c, chứng minh AH là đường trung trực của BC
d, trên tia đối của HA lấy điểm E sao cho HE=HA. chứng minh Δ AHB=ΔEHC
e, chứng minh AB // CE
f, chứng minh góc ABE=góc ACE
h, chứng minh BE // AC
g, chứng minh BC là tia phân giác của góc ABE
Mn người giúp mk nha mk đag cần gấp. cảm ơn
a/ Xét tam giác AHB và tam giác AHC có:
AB = AC (GT)
AH: cạnh chung
góc HAB = góc HAC (GT)
=> tam giác AHB = tam giác AHC (c.g.c)
b/ Ta có: tam giác AHB = tam giác AHC (câu a)
=> góc B = góc C (2 góc tương ứng)
c/ Ta có: tam giác AHB = tam giác AHC (câu a)
=> BH = HC (2 cạnh tương ứng) (1)
=> góc AHB = góc AHC (2 góc tương ứng) (2)
Mà góc AHB + góc AHC = 1800
=> góc AHB = AHC = 900 (3)
Từ (1);(2);(3) => AH là trung trực của BC
Xét tam giác AHB và tam giác EHC có:
góc AHB = góc EHC (đối đỉnh)
BH = CH (đã chứng minh)
HE = HA (GT)
=> tam giác AHB = tam giác EHC
mk xin lỗi nhé, khuya rồi mà mai mk phải đi hc sớm
nên giờ mk giải đến đây, mai mk giải tiếp nhé
Mk giải tiếp nhé:
e/ Ta có: tam giác AHB = tam giác EHC (câu d)
=> \(\widehat{BAH}\)=\(\widehat{HEC}\) (2 góc tương ứng)
Mà góc BAH, góc HEC ở vị trí so le trong
=> AB//CE (đpcm)
f/ Xét tam giác AHC và tam giác BHE có:
góc AHC = góc BHE (đối đỉnh)
AH = HE (GT)
BH = HC (đã chứng minh)
=> tam giác AHC = tam giác BHE (c.g.c)
Ta có: \(\widehat{ABH}\)=\(\widehat{ECH}\) (vì tam giác ABH = tam giác CHE) (1)
Ta lại có: \(\widehat{HBE}\)=\(\widehat{ACH}\)(vì tam giác AHC = tam giác BHE) (2)
Từ (1), (2) => \(\widehat{ABH}\)+\(\widehat{HBE}\)=\(\widehat{ECH}\)+\(\widehat{ACH}\)
=> \(\widehat{ABE}\)=\(\widehat{ACE}\) (đpcm)
h/ Ta có: tam giác AHC = tam giác BHE (câu f)
=> \(\widehat{CAH}\)=\(\widehat{HEB}\) (2 góc tương ứng)
Mà góc CAH, góc HEB ở vị trí so le trong
=> BE//AC (đpcm)
g/ Xét tam giác BAC và tam giác BEC có:
BC: cạnh chung
AB = CE (vì tam giác ABH = tam giác ECH)
AC = BE (vì tam giác AHC = tam giác BHE)
=> tam giác BAC = tam giác BEC (c.c.c)
=>\(\widehat{ABC}\)=\(\widehat{EBC}\) (2 góc tương ứng)
=> BC là phân giác của góc ABE