Ta có: \(P\left(x\right)=x^5+ax^4+bx^3+cx^2+dx+e\)
Suy ra \(P\left(1\right)=1^5+a\cdot1^4+b\cdot1^3+c\cdot1^2+d\cdot1+e=1\)
\(\Rightarrow a+b+c+d+e=0\)
\(P\left(2\right)=2^5+a\cdot2^4+b\cdot2^3+c\cdot2^2+d\cdot2+e=4\)
\(\Rightarrow16a+8b+4c+2d+e+28=0\)
\(P\left(3\right)=3^5+a\cdot3^4+b\cdot3^3+c\cdot3^2+d\cdot3+e=9\)
\(\Rightarrow81a+27b+9c+3d+e+234=0\)
\(P\left(4\right)=4^5+a\cdot4^4+b\cdot4^3+c\cdot4^2+d\cdot4+e=16\)
\(\Rightarrow256a+64b+16c+4d+e+1008=0\)
\(P\left(5\right)=5^5+a\cdot5^4+b\cdot5^3+c\cdot5^2+d\cdot5+e=25\)
\(\Rightarrow625a+125b+25c+5d+e+999=0\)
Thay lẫn lộn vào nhau đi nhé
Cho phép lm tiếp....
\(\Rightarrow\left\{{}\begin{matrix}15a+7b+3c+d=-28\\80a+26b+8c+2d=-234\\255a+63b+15c+3d=-1008\\624a+124b+24c+4d=-3100\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}50a-12b+2c=-178\\210a+42b+6c=-924\\564a+96b+12c=-2988\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a=-15\\b=85\\c=-224\end{matrix}\right.\)
Thay bào pt \(15a+7b+3c+d=-28\) ta có: \(-225+595-672+d=-28\Rightarrow d=274\)
Thay vào pt \(a+b+c+d+e=0\) ta có:
\(-15+85-224+274+e=0\Rightarrow e=-120\)
Thay a,b,c,d,e vào r` tính là ra!
p/s: cho a,b,c bấm casio nhé!
Cách khác:
Tìm đa thức phụ: giả sử có đa thức:
\(\:ax^2+bx+c\)
Ta có: \(\left\{{}\begin{matrix}P\left(1\right)=a\cdot1^2+b\cdot1+c=1\\P\left(2\right)=a\cdot2^2+b\cdot2+c=4\\P\left(3\right)=a\cdot3^2+b\cdot3+c=9\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b+c=1\\4a+2b+c=4\\9a+3b+c=9\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=0\\c=0\end{matrix}\right.\)
\(\Rightarrow\:ax^2+bx+c=1\cdot x^2+0\cdot x+0=x^2\)
\(\Rightarrow P\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)+x^2\)
Tới đây thay từng x vào r` tính....