Lời giải:
Gọi $d$ là công sai và số $S_1=n$. Ta có:
$S_2=S_1+d=n+d$
$S_3=S_2+d=S_1+2d=n+2d$
$\Rightarrow S_3-S_2=d$
Hay $9=d$. Khi đó:
$S_2=n+d\Rightarrow n=S_2-d=4-9=-5$
Khi đó:
$S_5=n+(5-1)d=-5+4.9=31$
Lời giải:
Gọi $d$ là công sai và số $S_1=n$. Ta có:
$S_2=S_1+d=n+d$
$S_3=S_2+d=S_1+2d=n+2d$
$\Rightarrow S_3-S_2=d$
Hay $9=d$. Khi đó:
$S_2=n+d\Rightarrow n=S_2-d=4-9=-5$
Khi đó:
$S_5=n+(5-1)d=-5+4.9=31$
1) cho CSN (un) có u2.u3=27 ,u3+u5=90 thì q =?
2 ) cho CSN 9,3,1,.... thì q =?
Tìm u1, q của CSN biết: u4 - u2 = 72 và u5 - u3 = 144
Cho dãy số (un) biết u1 = 3; \(u_{n+1}=\sqrt{1+u_n^2}\) với \(n\ge1\). Tìm công thức của số hạng tổng quát un
Tìm 3 số dương a,b,c biết chúng theo ths tự lập trành CSC (d<0); b,c,a theo thứ tự lập thành CSN và abc=8
Cho x,y,z theo thứ tự lập thành CSN với q ≠ 1; x,2y,3z theo thứ tự lập thành CSC với d ≠ 0. Tìm q.
Cho dãy số (Un) xác định bởi: \(\left\{{}\begin{matrix}u_1=\dfrac{3}{2}\\u_{n+1}=\dfrac{1}{4-4u_n}\end{matrix}\right.\); \(\forall n\in N\)*. Tìm số hạng tổng quát Un
Cho dãy số (un) xác định bởi : u1=1 ,\(u_{n+1}=\dfrac{3}{2}\left(u_n-\dfrac{n+4}{n^2+3n+2}\right)\)
Tìm công thức số hạng tổng quát un theo n
Cho dãy số (Un) xác định bởi: \(\left\{{}\begin{matrix}u_1=\dfrac{3}{2}\\u_{n+1}=\dfrac{1}{4-4u_n};\forall n\in N\text{*}\end{matrix}\right.\). Tìm số hạng tổng quát Un
Cho CSN có: u1 + u3 + 3 và u12 +u32 = 5. 0<q<1. Tính S10