Cho dãy số (Un) xác định bởi: \(\left\{{}\begin{matrix}u_1=\dfrac{3}{2}\\u_{n+1}=\dfrac{1}{4-4u_n};\forall n\in N\text{*}\end{matrix}\right.\). Tìm số hạng tổng quát Un
Cho dãy số (Un) xác định bởi công thức truy hồi \(\left\{{}\begin{matrix}u_1=2\\u_{n+1}=\dfrac{n+2}{4.\left(n+1\right)}u_n\end{matrix}\right.\), \(n\in\)N*. Công thức số hạng tổng quát của dãy số (Un) là?
Cho dãy số (Un) xác định bởi:\(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=-\dfrac{3}{2}u_n^2+\dfrac{5}{2}u_n+1\end{matrix}\right.\), \(\forall n\ge1\)
1) Hãy tính u2.u3,u4,u5
2) Dự đoán công thức của số hạng tổng quát Un
cho dãy số(un) được xác định bởi \(\left\{{}\begin{matrix}u_1=2\\u_{n+1}=\sqrt{\dfrac{n+1}{n}}\left(u_n+3\right)-3\end{matrix}\right.\) ,n=1,2,...Tìm công thức tổng quát của dãy số (un) và tính \(\lim\limits\dfrac{u_n}{\sqrt{n}}\) .
Cho dãy số (Un) được xác định bởi: \(\left\{{}\begin{matrix}u_1=\dfrac{1}{2}\\u_{n+1}=\dfrac{u_n}{3.\left(3n+1\right)u_n+1}\end{matrix}\right.\),\(n\in N\)*. Tính tổng 2020 số hạng đầu tiên của dãy số đó
Cho dãy số (Un): \(\left\{{}\begin{matrix}u_1=1,u_2=2\\u_{n+2}=-\sqrt{2}.u_{n+1}-u_n\end{matrix}\right.\). Hãy xác định số hạng tổng quát của dãy (Un)
Bài 1: Cho dãy (Un): \(\left\{{}\begin{matrix}U_1=1\\U_{n+1}=2U_n+3\end{matrix}\right.\)
a) Tìm: U5
b) Tìm số hạng tổng quát của dãy (Un)
Bài 2: Xét tính tăng, giảm
a) \(U_n=\dfrac{\sqrt{n+1}-\sqrt{n}}{n}\)
b) \(\left(U_n\right):\left\{{}\begin{matrix}U_n=3\\U_{n+1}=\sqrt{1+U_n^2}\end{matrix}\right.\)
Bài 3: Tìm a để (Un): \(U_n=\dfrac{an+2}{n+1}\) là dãy tăng
Bài 4: Xét tính bị chặn:
a) \(U_n=\dfrac{n^2+1}{2n^2-3}\)
b) \(U_n=\dfrac{n-1}{\sqrt{n^2+1}}\)
Bài 5: Cho dãy: \(\left\{{}\begin{matrix}U_1=\sqrt{2}\\U_n+1=\sqrt{U_n+2}\end{matrix}\right.\), (Un)
Chứng minh rằng: (U1) tăng, bị chặn trên bởi 2
cho dãy số (Un) được xác định bởi \(\left\{{}\begin{matrix}u_1=2\\n\left(n^2-1\right)u_n=u_1+2u_2+3u_3+...+\left(n-1\right)u_{n-1}\end{matrix}\right.\)
tìm công thức tổng quát để tính Un
Cho dãy số (Un) được xác định như sau: \(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=\sqrt{u_n.\left(u_n+1\right).\left(u_n+2\right).\left(u_n+3\right)+1}\end{matrix}\right.,\forall n\in N\). Đặt \(v_n=\sum\limits^n_{i=1}\dfrac{1}{u_i+2}\). Tính \(v_{2020}\)